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Hideo Noda
Koki Kyo

Abstract
To analyze the dynamic structures of the economic growth of Taiwan and mainland

China, we propose a set of models of dynamic production functions that consider
total factor productivity (TFP) and output elasticities as time-varying parameters.
Bayesian method based on the smoothness priors approach is applied for parameter
estimation. A new approach, called the random grouping method, is proposed to
overcome difficulties resulting from rapid changes in the TFP trend. According to
the estimation results, we find that the growth rates of TFP in Taiwan have been
fluctuated at very low levels since the late 1980s. On the other hand, TFP in mainland
China has shown a gentle upward tendency since the late 1970s. Consequently it would
appear that the reform and open-door policies since 1978 have contributed to TFP in
mainland China.

Keywords: economic growth, total factor productivity, dynamic production func-
tion, Bayesian estimation, method of random grouping

JEL classification: C11, C22, C51, O40, O57

1 Introduction

Under the circumstances of the advance of globalization and growing international eco-

nomic interdependence, the trends for growth of nations have come a major concern for

many people such as entrepreneurs, and administration policy-makers. Especially, the high

growth performance of China (hereinafter called mainland China) has recently received

much worldwide attention because it has achieved remarkable economic development since

beginning its economic reforms and opening-up policy in 1978. The process of mainland

China’s growth has often been compared with that of Taiwan (e.g. Chow (2002, 2007)).

Taiwan’s rapid growth occurred about two decades earlier than that of mainland China.

Among Asian newly industrializing economies (NIEs), the Taiwan economy has achieved

significant successes.
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The sources of economic growth are generally decomposed into capital, labor and total

factor productivity (TFP). As it is obviously difficult to perpetually increase capital or

labor, many researchers consider that from a long-term perspective an increase in TFP is

the most important factor to achieve sustained economic growth. Hence, grasping trends

related to TFP is a crucial issue in empirical research of economic growth. In this paper,

we propose a new approach based on Bayesian methodology to estimate the trends in TFP

for mainland China and Taiwan.

The two methodologies used in most earlier literature on the growth performance of

mainland China and Taiwan have been growth accounting and the econometric estimation

of production functions or its variations. For example, reports using the growth accounting

approach include Young (1995), Borensztein and Ostry (1996), Singh and Trieu (1999),

Wu (2002, ch.5), Wang and Yao (2003), Young (2003), Bosworth and Collins (2008). On

the other hand, reports based on the econometric approach include Armer and Liu (1993),

Chow (1993), Chow and Li (2002), Chow and Lin (2002), Lin (2003, 2004).

Though earlier studies provide interesting results, we believe that there remains scope

for additional research in this field. As pointed out by Barro (1999) and Kyo and Noda

(2006), one problem with growth accounting is the assumption that social marginal prod-

ucts can be measured by production factor prices. We believe that this is not necessarily

the case if social marginal products coincide with production factor prices. The econo-

metric approach of the production functions or its variations does not rely on the above-

mentioned assumption. However, a disadvantage of the econometric approach is that it

fails to estimate well trends in TFP. As well, in the econometric approach it is usually

assumed that the output elasticities of production factors are constant over time. Such

output elasticities may, however, vary over time. For this reason we consider a model in

which the output elasticities vary over time. The foundation of the approach applied in

this paper is the methodologies for Bayesian linear modeling using the smoothness priors

approach, developed by Akaike (1980) and Kitagawa and Gersch (1996). In Jiang (1995)

these methods are applied to regression models with time-varying coefficients.

The paper is organized as follows. In the next section, we present the basic models.
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The third section introduces a set of Bayesian methods for parameter estimation. Results

of the estimation and discussions thereof are given in the fourth section. Finally, the fifth

section concludes the paper.

2 Model construction

2.1 Background

The structure of our model, introduced below, is related to that of Wan and Yao (2003),

but differs from theirs in several respects. These differences are elaborated below. In the

following discussion, we use the symbol t as the time variable.

Wang and Yao (2003) used the growth accounting approach to examine the sources of

economic growth in China. They specified the aggregate production function as

Qt = AtK
θ
t (L∗

tHt)μ, (1)

where Qt is the real gross domestic product (GDP), Kt is the stock of physical capital,

L∗
t is total employment, and Ht is the stock of human capital, measured as the number of

average effective years of schooling per person in the 14-65 age group. Hence, Lt ≡ L∗
tHt

is a skill-adjusted measure of labor input. At represents the productivity of an economy

when all factor inputs are used. For this reason, it is called total factor productivity, or

just TFP. θ and μ are output elasticities with respect to physical capital and skill-adjusted

labor, respectively.

In this paper, we regard θ and μ as time-varying parameters together with At, and

consequently, henceforth, are replaced with θt and μt. In Wang and Yao (2003), a constant

returns to scale (CRS), that is, θ+μ = 1 is assumed. This assumption was also applied for

a dynamic production function in Kyo and Noda (2008) to obtain stability of estimation.

In this paper we waive the assumption of CRS because it may cause a biased estimation

for the time-varying parameter case.
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2.2 Models

To analyze economic growth in Taiwan and mainland China, with a few modifications to

the model in Eq. (1) we introduce the dynamic production function as

Qt = AtK
θt
t L

μt
t . (2)

As stated above, one notable feature of the production function in Eq. (2) is that θt

and μt are considered time-varying parameters together with TFP At. Under logarithmic

transformation, Eq. (2) can be rewritten as

qt = θtkt + μtlt + at,

where qt = lnQt, kt = lnKt, lt = lnLt, at = lnAt. Thus, we have a statistical model for

a set of sample data of size n as follows:

qt = θtkt + μtlt + at + εt (t = 1, 2, . . . , n), (3)

where εt is assumed to be a Gaussian white noise sequence with εt ∼ N(0, σ2), where σ2

is a constant unknown parameter.

Clearly, we can not obtain valuable estimates of the parameters by a method such as

the method of least squares. In this paper, we regard θt, μt and at for t = 1, 2, . . . , n as

random variables from a Bayesian perspective, and apply the smoothness priors approach,

introduced by Kitagawa and Gersch (1996), in setting up prior distributions. Smoothness

priors are introduced to these parameters based on the assumption that they vary smoothly

over time. A set of first order stochastic difference equations is used as priors of the time-

varying parameters as follows:

θt − θt−1 = ψt, (4)

μt − μt−1 = φt, (5)

at − at−1 = νt. (6)

Here we assume that ψt and φt are Gaussian white noise sequences with ψt ∼ N(0, σ2/d2
1)

and φt ∼ N(0, σ2/d2
1).

4



However, empirical knowledge obtained from Kyo and Noda (2008) implies that there

may be rapid changes in the trend of at, the logarithmic transformation of TFP. Thus, an

added relationship is introduced to the sequence νt as

νt = ct + ωt, (7)

where ωt is a Gaussian white noise sequence with ωt ∼ N(0, σ2/d2
2). Here, ct is considered

an unknown parameter for the case that there is a rapid change on at and ct = 0 otherwise.

The constraint
∑n

t=1 ct = 0 is introduced here to ensure that
∑n

t=1 E{νt} = 0.

Moreover, in the above models, θ0, μ0, a0, d1, d2 and the parameters in the set

{c1, c2, . . . , cn} are as parameters in the prior distributions of the random parameters

θ = (θ1, θ2, . . . , θn)t, μ = (μ1, μ2, . . . , μn)t and a = (a1, a2, . . . , an)t; thus they are called

hyperparameters in Bayesian modeling. Here, we regard the hyperparameters as unknown

constants. Further, we also assume that εt, ψt, φt and ωt are independent of each other.

By combining Eqs. (3), (4), (5), (6) together with Eq. (7), a set of Bayesian linear models

for the parameters θ, μ and a can be constructed.

3 Parameter estimation

3.1 Basic scheme

Here we give a basic scheme for parameter estimation based on Jiang (1995), which applied

the methodology developed by Akaike (1980).

We assume that there are m non-zero elements, denoted by {c∗1, c∗2, . . . , c∗m}, in the set

{c1, c2, . . . , cn}, and denote a vector of the non-zero elements by c∗ = (c∗1, c∗2, . . . , c∗m)t, so

we have m < n. We treat the elements of c∗ as unknown parameters. From Eq. (3), the

likelihood of θ, μ, a, and σ2 is given by

f(y|θ,μ,a, σ2) =
( 1√

2πσ2

)n
exp

{
− 1

2σ2
||y − X1θ − X2μ − a||2

}
,

where y = (q1, q2, . . . , qn)t, X1 = diag(k1, k2, · · · , kn), X2 = diag(l1, l2, · · · , ln), and || ∗ ||
denotes the Euclidian norm. Furthermore, from the assumption in Eqs. (4), (5), (6)

together with Eq. (7) for a set of given values of σ2 and the hyperparameters, the prior
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densities for θ, μ, a are respectively given by

π1(θ|σ2, θ0, d1) =
( d1√

2πσ2

)n
exp

{
− d2

1

2σ2
||Dθ − θ0u||2

}
,

π2(μ|σ2, μ0, d1) =
( d1√

2πσ2

)n
exp

{
− d2

1

2σ2
||Dμ− μ0u||2

}
,

π3(a|σ2, a0, c
∗, d2) =

( d2√
2πσ2

)n
exp

{
− d2

2

2σ2
||Da − a0u − Gc∗||2

}
, (8)

where

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0

−1 1
. . .

...

0 −1
. . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and G = (gij) is an n×m matrix with gij = 1 for c∗j = ci and gij = 0 otherwise.

Then, by putting bt = (θt,μt,at), we obtain the marginal likelihood of σ2 and the

hyperparameters as

L(σ2, θ0, μ0, a0, c
∗, d1, d2)

=
∫
f(y|θ,μ,a, σ2)π1(θ|σ2, θ0, d1)π2(μ|σ2, μ0, d1)π3(a|σ2, a0, c

∗, d2)dθdμda

=
( 1√

2πσ2

)n
d2n

1 dn
2 det(W tW )−1/2 exp

{
− 1

2σ2
||Wb̂ − h||2

}
, (9)

where

W =

⎡
⎢⎢⎢⎣

X1 X2 I
d1D O O
O d1D O
O O d2D

⎤
⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎣

y
d1θ0u
d1μ0u

d2a0u + d2Gc∗

⎤
⎥⎥⎥⎦

with O being a zero-matrix, and b̂ = (W tW )−1W th denoting the mode of a posterior

density,

f(b|y;σ2, θ0, μ0, c
∗, d1, d2)

=
f(y|θ,μ,a, σ2)π1(θ|σ2, θ0, d1)π2(μ|σ2, μ0, d1)π3(a|σ2, a0, c

∗, d2)∫
f(y|θ,μ,a, σ2)π1(θ|σ2, θ0, d1)π2(μ|σ2, μ0, d1)π3(a|σ2, a0, c∗, d2)dθdμda

,

of b given σ2 and the hyperparameters. Maximizing the likelihood L(σ2, θ0, μ0, a0, c
∗, d1, d2)

in Eq. (9) with respect to the hyperparameters, we obtain their estimates θ̂0, μ̂0, â0, ĉ∗,

d̂1 and d̂2.

6



Computationally, if the values of d1 and d2 are given, b together with θ0, μ0, a0 and c∗

can be estimated simultaneously using the least squares method (see Jiang (1995)). That

is, if we set

V =

⎡
⎢⎢⎢⎣

X1 X2 I 0 0 0 0
d1D O O −d1u 0 0 0
O d1D O 0 −d1u 0 0
O O d2D 0 0 −d2u −d2G

⎤
⎥⎥⎥⎦ , z =

⎡
⎢⎢⎢⎣

y
0
0
0

⎤
⎥⎥⎥⎦ , β =

⎡
⎢⎢⎢⎢⎢⎣

b
θ0
μ0

a0

c∗

⎤
⎥⎥⎥⎥⎥⎦ ,

the estimate, β̂(d1, d2) = (V tV )−1V tz, for β is obtained. Here, 0 denotes a vector of

zeros. Thus, the partial likelihood of d1 and d2 can be obtained by substituting β̂(d1, d2)

into Eq. (9), and then the log-likelihoods for σ2, d1 and d2 are given as


(σ2, d1, d2) = −1
2
{n(ln(2πσ2) +

σ̂2(d1, d2)
σ2

− 2 ln(d2
1) − ln(d2

2)) + ln(det(W tW ))} (10)

with

σ̂2(d1, d2) =
1
n
||z − V θ̂(d1, d2)||2.

So the estimates d̂1, d̂2 of d1 and d2 can be obtained by maximizing the function 
(σ2, d1, d2)

in Eq. (10) with respect to d1 and d2 using a quasi-Newton method. Finally, the esti-

mate of β is given by ̂̂
β = β̂(d̂1, d̂2). Hence the final estimates for all the parameters are

obtained.

It is well-known that σ2 can be estimated with σ̂2(d̂1, d̂2), which is its maximum

likelihood estimate, or, equivalently, the least squares estimate. However, for the data

analyzed here, the value of σ̂2(d̂1, d̂2) may be very small, which may lead to unstable

estimates for the parameters when we apply σ̂2(d̂1, d̂2) as the estimate of σ2. In this

paper, we give an estimate for σ2 in a reasonable way.

3.2 Identifying rapid changes in TFP

Based on the above basic scheme for parameter estimation, we set out a procedure for

identifying rapid changes on {a1, a2, . . . , an}; that is, we propose a new approach for

identifying c∗ from {c1, c2, . . . , cn}. The newly-proposed approach is called the method of

random grouping.
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First, for integers r and s that satisfy 3s+r = n and 1 ≤ r ≤ 3, we consider that there

are not changes on the first r initial values of the sequence at, so we put c1 = c2 = · · · =

cr = 0. Thus, it is only necessary to identify c∗ from {cr+1, cr+2, . . . , cn}. In the process of

identifying c∗, we assume, temporarily, that all of elements in {cr+1, cr+2, . . . , cn} are un-

known parameters. Clearly, the elements in the set {cr+1, cr+2, . . . , cn} can be divided into

s groups of three because the number of the elements is 3s. We have
∑n

t=r+1 ct = 0 from the

assumption that
∑n

t=1 ct = 0; that is, the mean of all the elements in {cr+1, cr+2, . . . , cn}
is zero.

For three elements, say ˜̃c1, ˜̃c2 and ˜̃c3, in a group, we consider an orthogonal transfor-

mation of (˜̃c1, ˜̃c2, ˜̃c3)t as follows:

H(˜̃c1, ˜̃c2, ˜̃c3)t = (c̃1, c̃2, c̃3)t,

where H = (hij) is a 3-dimensional Helmert matrix with the elements h11 = h12 = h13 =

1/
√

3, h21 = −h22 = 1/
√

2, h23 = 0, h31 = h32 = 1/
√

6 and h33 = −2/
√

6. The set

{˜̃c1, ˜̃c2, ˜̃c3}, can be considered a sample drawn from the set {cr+1, cr+2, . . . , cn}. Thus, it

can be seen that c̃1 is in proportion to the mean of the sample {˜̃c1, ˜̃c2, ˜̃c3}, so c̃1 = 0 holds

with a larger probability. Therefore, we can set c̃1 = 0 and treat c̃2 and c̃3 as parameters.

The above consideration is applied as follows.

Let P denote a 3s-dimensinal permutation matrix and consider an orthogonal trans-

formation of the vector (cr+1, cr+2, . . . , cn)t as follows:

H∗P (cr+1, cr+2, . . . , cn)t = (c̃1, c̃2, . . . , c̃3s)t (11)

with

H∗ =

⎡
⎢⎢⎢⎢⎢⎣

H O · · · O

O H
. . .

...
...

. . . . . . O
O · · · O H

⎤
⎥⎥⎥⎥⎥⎦

being a 3s-dimensional orthogonal matrix. Suppose that in the set {c̃1, c̃2, . . . , c̃3s} there

are s zero elements and 2s non-zero elements. We treat the non-zero elements in {c̃1, c̃2, . . . , c̃3s}
as unknown parameters and express the vector of these unknown parameters by c̃∗. Thus,
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Eq. (11) can be rewritten as

H∗P (cr+1, cr+2, . . . , cn)t = Uc̃∗,

or equivalently,

(cr+1, cr+2, . . . , cn)t = P (H∗)tUc̃∗ (12)

with U being a properly-designed 3s× 2s matrix.

From Eq. (6) together with Eqs. (7) and (12), we can set up an another prior density

for a as follows:

π∗3(a|σ2, a0, c̃
∗, d2) =

( d2√
2πσ2

)n
exp

{
− d2

2

2σ2
||Da − a0u − e||2

}
, (13)

where et = (c1, c2, . . . , cr, (Uc̃∗)tH∗P ) with c1 = c2 = · · · = cr = 0. By replacing the

prior density π3(a|σ2, a0, c
∗, d2) in Eq. (8) with π∗3(a|σ2, a0, c̃

∗, d2) and using the basic

scheme in Section 3.1, we can obtain the estimate of c̃∗ together with other parameters

and hyperparameters. Therefore, all the estimates {̂̃c1, ̂̃c2, . . . , ̂̃c3s} for the elements in

{c̃1, c̃2, . . . , c̃3s} can be obtained. Hence, we can an estimate (ĉr+1, ĉr+2, . . . , ĉn)t for the

vector (cr+1, cr+2, . . . , cn)t using

(ĉr+1, ĉr+2, . . . , ĉn)t = P H∗t(̂̃c1, ̂̃c2, . . . , ̂̃c3s)t

which is derived from Eq. (11).

Furthermore, we can obtain N sets of estimates for (cr+1, cr+2, . . . , cn)t, each using a

permutation matrix constructed randomly. Let (ĉ(j)r+1, ĉ
(j)
r+2, . . . , ĉ

(j)
n )t be the j-th estimate

for (cr+1, cr+2, . . . , cn)t, we can use

̂̂ci =
1
N

N∑
j=1

ĉ
(j)
i , (i = r + 1, r + 2, . . . , n) (14)

as the final estimates for {cr+1, cr+2, . . . , cn}. Then, we select m elements, that have larger

absolute values estimated, as unknown parameters, hence the unknown parameters in the

set {cr+1, cr+2, . . . , cn} are identified.
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4 Results and discussions

4.1 Results for Taiwan

To estimate the model for Taiwan, we use real GDP (Qt), the number of hours worked

adjusted by using the number of years of schooling of the working population as a skill-

adjusted labor (Lt), and physical capital (Kt) from Chow and Lin (2002). Hence, we can

regard the skill-adjusted labor (for descriptive purposes, hereinafter called labor) data of

Chow and Lin (2002) as a proxy of human capital. The data of Chow and Lin (2002)

cover the period 1951-1999.

Chen (2003) divides the stages of postwar economic development of Taiwan into four

periods as: the reconstruction period from 1945 to 1952, the self-sustained period from

1953 to 1963, the high-growth period from 1964 to 1973, and the medium growth period

after 1974. The reconstruction period has also been called the economic system reformat-

ting period. In this period, agricultural goods were mainly exported. The self-sustained

period is marked by import substitution industrialization, which meant switching policy

from imports to domestic production. In the high-growth period, an export-oriented indus-

trialization policy is implemented. Trade during this period is characterized by importing

raw materials and exporting manufactured products. In the early 1970s, the Taiwan gov-

ernment adopted a heavy and chemical industry policy to promote the advancement of

Taiwan’s industrial structure, and since the 1980s has developed industrial policy programs

focused on the high-tech industry..

Figures 1 and 2 show the estimated trends in the output elasticity with respect to

physical capital (θ̂t) and the output elasticity with respect to labor (μ̂t) in Taiwan, respec-

tively. The estimated trend in the output elasticity with respect to the physical capital

varies between 0.613 and 0.616. On the other hand, the estimated trend in the output

elasticity with respect to labor varies between 0.414 and 0.416. As well, because the sum

of the output elasticities of physical capital and labor exceeds one, the Taiwan economy

is regarded as showing increasing returns to scale in the period 1951-1999.
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0.614
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Figure 1: The estimated trend in the output elasticity of physical capital (θ̂t) in Taiwan

0.412

0.413

0.414

0.415

0.416

0.417

1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

Figure 2: The estimated trend in the output elasticity of labor (μ̂t) in Taiwan

From Figures 1 and 2, we find that the estimated trend in both output elasticities

with respect to physical capital and labor indicate a similar movement during the period

1951-1999. That is, there are some peaks and troughs from the 1950s to the 1980s. In the

1990s, we show that there is little change in the estimates of both output elasticities. As

well, it is found that the estimates of both output elasticities are relatively high compared

with those in the previous periods. Therefore, it would appear that the contributions per

unit of physical capital and labor to economic growth from the 1990s onward were greater

than in previous periods.

Figure 3 shows the trend for estimated TFP (Ât = exp(ât)) in Taiwan. As is clear

from Figure 3, we find that there is a pronounced drop in TFP from the mid-1970s to the

mid-1980s. That is, we confirm that there was a precipitous fall in the mid-1970s, and

then an accelerated rise in the mid-1980s. Therefore, in the mid-1980’s, the TFP had a

marked effect on economic growth in the Taiwanese economy. Since the late 1980s, the
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growth rates of TFP in Taiwan have fluctuated, but at very low levels.

3.2

3.4

3.6

3.8

4

4.2

1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

Figure 3: The estimated trend in TFP (Ât) in Taiwan

4.2 Results for mainland China

Our sample for mainland China covers a 54-year period (1952-2005). Data for real GDP

(Qt), the stock of physical capital (Kt) and the number of employed persons (L∗
t ) are taken

from Chow (2008), while data for the average number of schooling years of the working

population as a proxy of human capital (Ht) is taken from Minami, Makino and Luo

(2008). As in Wang and Yao (2003), we use a skill-adjusted measure of labor, Lt ≡ L∗
tHt,

as the data for labor.

First, noting as a background to the social economy of mainland China, political move-

ments may have affected the economic growth in China during the period studied. During

the period 1952-2005,there were four main political movements as social campaigns. The

first was the Great Leap Forward campaign of 1958-1962. Although Chairman Mao’s hope

for economic growth was well directed, the Great Leap Forward caused many people to

starve to death, and so was a monumental failure. The second was the Cultural Revolution

of 1966-1976, which climaxed around 1968. It also caused extensive damage to the Chinese

economy, hence it was also a total failure. The third was the reform and opening-up from

1978. This led to the restoration of growth in the mainland Chinese economy. The fourth

was the demonstration at Tian’anmen Square in Beijing in the spring of 1989. This caused

economic stagnation because for a few years there was a slump in trade and tourism to
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mainland China.

The estimated trends in output elasticities of physical capital (θ̂t) and labor (μ̂t) are

shown in Figures 4 and 5, respectively. We can see that the trend in output elasticities of

physical capital nearly flatten out to a very high level (an average of about 0.887) over the

period studied, and the trend in μ̂t parallels that in θ̂t at a very low level (an average of

about 0.036). From these Figures, we can see also that these two output elasticities change

over time with similar patterns. The output elasticities decrease in the periods 1958-1962

(Great Leap Forward), 1966-1968 (the climax of Cultural Revolution), and 1988-1990

(demonstration at Tian’anmen Square), while they increase from 1978 (beginning of the

reform era).

0.880

0.882

0.884

0.886

0.888

0.890

1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004

Figure 4: The estimated trend in the output elasticity of physical capital (θ̂t) in mainland China

0.030

0.032

0.034

0.036

0.038

0.040

1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004

Figure 5: The estimated trend in the output elasticity of labor (μ̂t) in mainland China

Moreover, it is found that the estimates of the output elasticities of both physical

capital and labor, differ from the values of capital share and labor share computed from
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national accounts data. In the conventional growth accounting approach, the output

elasticities of physical capital and labor is frequently approximated using capital share and

labor share. Hence, Our estimation results suggest that researches using the conventional

growth accounting approach may lead to the erroneous conclusions.

Figure 6 shows the estimated trend in TFP in the mainland China economy. This result

suggests that the trend in TFP may be influenced by the political movements mentioned

above. For example, there was a sharp decline around the time at the end of the period

1958-1962 (Great Leap Forward), while there is a full turnaround around the climax of

the Proletarian Cultural Revolution. It is interesting that the trend in TFP is mostly

downwards during the period 1966-1976 (Cultural Revolution), especially it undergoes

a rapid change during the period 1966-1968 (the climax of Cultural Revolution), and

then turns slightly upwards during the post-reform period. However, there is a minor

trough around 1990, which may be the result of the shock caused by the demonstration

at Tian’anmen Square in 1989.
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Figure 6: The estimated trend in TFP (Ât) in mainland China

Overall, mainland China’s TFP has shown a gentle upward tendency since the late

1970s. Consequently it would appear that the reform and open-door policies since 1978

have contributed to mainland China’s TFP.
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4.3 Discussions

By comparing the above results for Taiwan with those for mainland China, we can see that

the estimates of the output elasticities of physical capital and labor are not so different in

Taiwan, but they are very different in mainland China. Specifically, the output elasticity

of labor is very low in mainland China. As stated in Chow and Lin (2002), the rationale

for the low estimate for the output elasticity of labor may be to the result of an abundance

of labor in mainland China. Thus, surplus labor may yield almost zero marginal output.

On the other hand, Interestingly, the trends in the output elasticities of both physical

capital and labor for Taiwan and mainland China show similar patterns. This is useful

information for improving modeling in the future studies.

5 Conclusions

To analyze the dynamic structure of the economic growth of Taiwan and mainland China,

we have proposed a set of models of dynamic production functions that consider TFP and

output elasticities as time-varying parameters. We use the smoothness priors approach

for parameter estimation. The new approach, called the random grouping method, was

proposed to overcome difficulties resulting from rapid changes in the TFP trend. The

results illustrated good performance of the newly-proposed method.

The main results can be summarized as follows. According to the estimation results

of Taiwan’s aggregate production function, in the period 1951-1999, we found that output

elasticity with respect to physical capital changed values from around 0.613 to 0.616, while

output elasticity with respect to labor has changed values from around 0.414 to 0.416. We

also confirmed that the contributions of per unit of physical capital and labor to economic

growth from the 1990s onward were greater than in previous periods. As well, because the

sum of output elasticities of physical capital and skill-adjusted labor exceeds one, Taiwan’s

aggregate production function is regarded as increasing returns to scale during the period

1951-1999. As for TFP in Taiwan, we found that there was a precipitous fall in the mid-

1970s, and then an accelerated rise in the mid-1980s. Therefore, in the mid-1980’s, the
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TFP had a marked effect on economic growth in the Taiwanese economy. Since the late

1980s, Taiwan’s TFP growth rates have fluctuated at very low levels.

On the other hand, the estimation results of mainland China’s aggregate production

function for the period 1952-2005 indicated that output elasticity with respect to physical

capital has had values change from around 0.885 to 0.888, while output elasticity with

respect to labor has changed in value from around 0.033 to 0.039. Therefore, in China,

output elasticity with respect to physical capital was relatively high, whereas output elas-

ticity with respect to labor was very low. Since 2000, both output elasticities have shown

a gradual upward tendency. Also, because the sum of output elasticities of physical capital

and skill-adjusted labor was below one, mainland China’s aggregate production function

is regarded as decreasing returns to scale during the period 1952-2005. As for mainland

China’s TFP trend, it was confirmed that the sharp declines from the late 1950s to the

early 1960s and from the mid-1960s to the late 1960s, corresponded to the periods of Great

Leap Forward and the climax of Cultural Revolution, respectively. Since the late 1970s,

TFP has shown a gentle upward tendency. This suggests that the reform and open-door

policies implemented since 1978 have had a positive effect on mainland China’s TFP.
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