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We present a Bayesian model for statistical inference in the CES production
function, and its application to the empirical analysis of economic growth in
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1 Introduction

Most people, not only economists and policymakers, are interested in economic

growth in countries, because trends in economic growth have a direct impact on

people’s standard of living. In particular, the recent decline in the economic perfor-

mance of many developed countries such as Japan and the United States necessitates

policy recommendations for the recovery of economic growth. In an attempt to re-

spond such social demands, evidence from empirical studies becomes essential, and

statistical methods for quantitative analyses of economic fluctuations take on an

increasingly important role in policy science. In the present paper, we propose an

extended production function approach for the quantitative analysis of economic

growth from a Bayesian perspective. Furthermore, we apply our proposed approach

to an empirical analysis of the Japanese and U.S. economies.

Overall, earlier empirical studies on sources of growth in a macro economy can be

classified into two types. The first is a growth accounting approach, which provides a

decomposition of the growth rate of output into components associated with changes

in factor inputs, and in a residual that reflects technological progress and other

elements (e.g., Young, 1995; Collins and Bosworth, 1996; Wang and Yao, 2003).

The second is often called a growth regression approach; it estimates regression

equations based on economic growth models (e.g., Barro, 1991; Mankiw, Romer, and

Weil, 1992; Shioji, 2001). Nonetheless, these conventional approaches are considered

inadequate, as explained below.

As is well known, growth accounting analyses require data on the elasticity of

output with respect to conventional factors of production (like physical and human

capital), in addition to data on the output and factors of production. Given the

difficulty of measuring the elasticity of output with respect to the factors of pro-

duction directly, the elasticity is measured indirectly as each relevant factor’s share

of national income. In other words, growth accounting assumes that factor prices

are equal to social marginal products. However, the assumption that factor prices

coincide with social marginal products is unlikely to hold at all times in reality. If

the deviation between the factor prices and social marginal products is too large to

neglect, then the results of growth accounting would naturally lack credibility.

Such assumptions are also made in many growth regression models. In addition,

a problem with growth regression approaches is that they usually do not represent

the time-variations in variables reflecting technological change, such as total factor

productivity (TFP), appropriately. For example, Mankiw, Romer, and Weil (1992)

assume that the growth rate of TFP is constant at any point in time. This simplifi-
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cation, which evidently lack flexibility, implies that the behavior of TFP is restricted

to exponential growth. Furthermore, it should be noted that many growth regres-

sion models assume that an economy is in a steady-state. However, as stated in

Galor and Zang (1997), it is hard to verify whether an economy is in a steady-state

or in a transition path.

As pointed out by Barro (1999), the advantage of the direct estimation of pro-

duction function models is that it requires none of the assumptions mentioned above.

Nevertheless, the conventional econometric analyses of production functions are also

inadequate. Specifically, as in growth regression approaches, many earlier reports

assume that the growth rate of variables reflecting technological change is constant

over time. Therefore, there is likely to be room for improvement in this framework

in the context of the production function approach.

Considering these issues that have arisen from previous research, we present a

Bayesian model for statistical inference in a constant elasticity of substitution (CES)

production function, and its application to empirical analysis of economic growth

in Japan and the United States. Unlike the associated literature, in our framework

the efficiency parameter is regarded as a time-varying parameter from a Bayesian

perspective. By estimation of the time-varying efficiency parameter using a Bayesian

method, we attempt to grasp the changes in efficiency at macroeconomic level. This

application of a Bayesian method allows a rigorous analysis of trends in a factor

reflecting technological change, compared with conventional approaches.

The rest of the paper is organized as follows. In Section 2, we construct an

analytical framework. Section 3 presents the basic scheme for parameter estimation.

In Section 4, we apply our proposed method to the empirical analysis of economic

growth in Japan and the United States. Section 5 concludes the paper.

2 Basic Setup

2.1 CES Production Function

In a given discrete time period t, the maximum amount of output Qt that can be

produced depends on both physical capital Kt and human capital Ht according to

an aggregate CES production function

Qt = ζ[ δK−ρ
t + (1 − δ)H−ρ

t ]−
ν
ρ , (1)

where parameters ζ, δ, ρ and ν represent the efficiency parameter, the distribution

parameter, the substitution parameter and the returns to scale parameter respec-

tively. In Eq. (1), we assume that γ̃ > 0, 0 ≤ δ ≤ 1, ρ > −1, ν > 0.
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A major concern for many people researching economic growth is ascertaining

changes in the efficiency parameter. Unlike the existing literature, we therefore

consider ζ to be a time-varying parameter ζt. To construct a statistical model for

the CES production function, we rewrite Eq. (1) as

Yt =
ν

ρ
− ν

ρ
[ δK−ρ

t + (1 − δ)H−ρ
t ]γt + εt, (2)

where Yt = (Q−ρ/ν
t − 1)/(−ρ/ν), γt = ζ

−ρ/ν
t , and εt denotes an error term. That

is, Yt is defined by a Box-Cox transformation of Qt. The Box-Cox transformation

is used here to equalize the variance of εt over time, hence we can assume that

εt ∼ N(0, σ2) with σ2 being an unknown parameter. Zellner (1971) made use of

the Box-Cox transformation in analyzing production functions, while Chetty and

Sankar (1969) introduced a Bayesian method for parameter estimation of the CES

production function based on a similar transformation. However, neither paper

allowed the efficiency parameter to vary over time.

2.2 Bayesian Modeling via Smoothness Priors Approach

In this paper, we regard the γt to be a random variable from a Bayesian perspective,

and apply the smoothness priors approach, introduced by Kitagawa and Gersch

(1996), in setting up a prior distribution for it. Specifically, a stochastic difference

equation of order 2 is used to define a prior distribution for γt as follows:

γt − 2γt−1 + γt−2 = ψt, (3)

where ψt is a Gaussian white noise sequence with ψt ∼ N(0, σ2/d2), where d > 0

is an unknown parameter. It is also assumed that εt and ψt are independent of

each other. In order to obtain a proper prior density of γt for t = 1, 2, . . . , n, it is

required to introduce γ0 and γ−1 as unknown parameters. Thus, we have three new

parameters γ0, γ−1 and d.

We consider the parameters δ, ρ, ν, σ2, γ0, γ−1 and d unknown constants. When

the values of these parameters are given, a system of Bayesian linear equations for

γt’s can be constructed based on Eqs. (2) and (3). Then, we can obtain poste-

rior distribution for γt’s by using the Bayesian linear modeling method proposed

by Akaike (1980). To obtain robust estimates, we combine the Bayesian model

averaging method with the Akaike’s approach.
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3 Estimation Procedure

3.1 Basic Scheme

Our parameter estimation scheme is based on the procedure introduced in Jiang

(1995), which is an application of Akaike’s approach (Akaike, 1980). For parameter

estimation, we need to rewrite Eq. (2) as follows:

Yt =
ν

ρ
a− ν

ρ
[ δK−ρ

t + (1 − δ)H−ρ
t ]γt + εt, (4)

where a is a formal parameter. Eqs. (2) and (4) are equivalent under the constraint

a = 1. (5)

We temporarily assume that a is a random variable with the prior distribution

a = 1 + ξ, (6)

where ξ ∼ N(0, σ2/λ2). To keep Eq. (5) it is required to put ξ = 0 into Eq. (6).

This can be realized by setting the variance σ2/λ2 = 0, or equivalently λ2 = ∞ for a

given value of σ2, since it is assumed that the mean of ξ is zero. However, the prior

distribution for a is then not defined well. This difficulty can be relieved by putting

λ = λ∗ with λ∗ being a sufficiently large positive number.

From Eq. (4), the likelihood of γ = (γ1, γ2, . . . , γn)t and the other related

parameters is given by

f(q|γ, δ, ρ, ν, a, σ2) = J

(
1√

2πσ2

)n

exp

[
− 1

2σ2
||y + Xγ − ν

ρ
1na||2

]
,

where J is the Jacobian of the transformation from Qt to Yt defined by J =

Πn
t=1(∂Yt/∂Qt). The other symbols are defined as follows: q = (Q1, Q2, . . . , Qn)t,

q = (Y1, Y2, . . . , Yn)t, X = diag(x1, x2, · · · , xn) with xi = [δK−ρ
i +(1−δ)H−ρ

i ]·(ν/ρ),
1n is a n-dimensional vector with all elements being one, and || ∗ || denotes the Eu-

clidian norm. Furthermore, when the values of σ2, γ0, γ−1, d and λ are given, from

Eqs. (3) and (6) the prior densities for γ and a are given by

π1(γ|σ2, b, d) =

(
d√

2πσ2

)n

exp

[
− d2

2σ2
||Dγ + Bb||2

]
,

π2(a|σ2) =

(
λ√

2πσ2

)
exp

[
− λ∗2

2σ2
(a− 1)2

]
,
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where

D =



1 0 · · · · · · · · · 0

−2 1
. . .

...

1 −2 1
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 1 −2 1


, B =


1 −2
0 1
0 0
...

...
0 0



and b = (γ−1, γ0)t. We then put θt = (γt, a) and obtain the marginal likelihood of

the related parameters as

L(σ2, δ, ρ, ν, b, d)

=
∫∫

· · ·
∫
f(q|γ, δ, ρ, ν, a, σ2)π1(γ|σ2, b, d)π2(a|σ2)dγda

= J

(
1√

2πσ2

)n

dnλ∗ det(W tW )−
1
2 exp

[
− 1

2σ2
||h − Wθ̂||2

]
, (7)

where

W =

 −X ν
ρ1n

−dD 0n

0tn λ∗

 , h =

 y
dBb
λ∗

 ,
0n is the n-dimensional zero vector, and θ̂ = (γ̂t, â)t = (W tW )−1W th denotes

the mean of a posterior density for θ

f(θ|q;σ2, δ, ρ, ν, b, d, λ)

=
f(q|γ, δ, ρ, ν, a, σ2)π1(γ|σ2, b, d)π2(a|σ2, λ)∫∫

· · ·
∫
f(q|γ, δ, ρ, ν, a, σ2)π1(γ|σ2, b, d)π2(a|σ2, λ)dγda

, (8)

given the related parameters. Therefore, the estimates, σ̂2, δ̂, ρ̂, ν̂, b̂ and d̂ for the

related parameters can be obtained by maximizing the likelihood L(σ2, δ, ρ, ν, b, d)

in Eq. (7).

Computationally, if the values of δ, ρ, ν and d are given, γ together with b and a

can be estimated simultaneously by using the least squares method (see for example,

Jiang, 1995). That is, when we set

z =

 y
0n

λ∗

 , V =

 −X O ν
ρ1n

dD dB 0n

0tn O λ∗

 , β =

 γ
b
a


with O denoting a zero matrix, the estimate,

β̂(δ, ρ, ν, d) = (γ̂t(δ, ρ, ν, d), b̂
t
(δ, ρ, ν, d), â(δ, ρ, ν, d))t

= (V tV )−1V tz,
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for β is obtained, and then the estimate of σ2 is given by σ̂2(δ, ρ, ν, d) = (1/n) ·
||z−V β̂(δ, ρ, ν, d)||2. Note that the corresponding estimates γ̂(δ, ρ, ν, d), b̂(δ, ρ, ν, d)

and â(δ, ρ, ν, d) ≈ 1 of γ, b and a can be obtained from each corresponding part

of β̂(δ, ρ, ν, d). Thus, by substituting b = b̂(δ, ρ, ν, d), and σ2 = σ̂2(δ, ρ, ν, d) into

L(σ2, δ, ρ, ν, b, d), the partial likelihood of δ, ρ, ν and d can be obtained as

L∗(δ, ρ, ν, d) =

[
1√

2πσ̂2(δ, ρ, ν, d)

]n

dnλ∗ det(W tW )−
1
2 exp

(
− n

2

)
. (9)

Correspondingly, a conditional poterior density, g(γ|q; δ, ρ, ν, d), for γ can be derived

form f(θ|q;σ2, δ, ρ, ν, b, d) in Eq. (8) by

g(γ|q; δ, ρ, ν, d) = f(θ|q; σ̂2(δ, ρ, ν, d), δ, ρ, ν, b̂(δ, ρ, ν, d), d)

under the condition that a = â(δ, ρ, ν, d).

3.2 Using Bayesian Model Averaging Approach

Theoretically, the parameters δ, ρ, ν and d can be estimated using a numerical

method, such as a quasi-Newton method, by maximizing the partial likelihood

L∗(δ, ρ, ν, d) in Eq. (9). Depending on the function L∗(δ, ρ, ν, d), it may sometimes

be hard to use such a numerical method directly to estimate each of the parameters

δ, ρ, ν and d.

To avoid this difficulty, we use the Bayesian model averaging approach as follows.

Firstly, for a given integer I we take δi = i/(I+1) as a value of δ, so for i = 1, 2, . . . , I

we have I discrete values for δ that are uniformly distributed in the interval (0, 1).

On the other hand, by using the basic estimation scheme introduced in the preceding

subsection, for a value δi of δ together with the given values of ρ, ν and d, we have

a set of Bayesian linear models which is denoted by Mi. Thus, we can obtain I sets

of Bayesian linear models under i = 1, 2, . . . , I.

From the Bayesian model averaging perspective (see for example, Claeskens and

Hjort, 2008), we assume that all of the models {M1,M2, . . . ,MI} are uncertain and

all of them have equal uncertainties. Thus, we use a uniform prior for the models

{M1,M2, . . . ,MI} as follows:

q(Mi) =
1
I
, (i = 1, 2, . . . , I)

where q(Mi) is the prior probability for model Mi. As shown in the preceding

subsection a partial likelihood for model Mi is L∗(δi, ρ, ν, d), as given in Eq. (9).
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Thus, a conditional posterior probability for model Mi is given by

p(Mi|q; ρ, ν, d) =
L∗(δi, ρ, ν, d)q(Mi)∑I
l=1 L

∗(δl, ρ, ν, d)q(Ml)

=
L∗(δi, ρ, ν, d)∑I
l=1 L

∗(δl, ρ, ν, d)
.

Moreover, from the basic estimation scheme mentioned above, we can see that

for given δi, ρ, ν and d, the posterior mean of γ is γ̂(δi, ρ, ν, d) is as the posterior

mean of γ, defined by

γ̂(δi, ρ, ν, d) =
∫ ∫

· · ·
∫

γg(γ|q; δi, ρ, ν, d)dγ.

Therefore, based on the Bayesian model averaging approach a synthetic estimate for

γ is (see, Draper, 1995):

̂̂γ(ρ, ν, d) =
I∑

l=1

γ̂(δl, ρ, ν, d)p(Ml|q; ρ, ν, d).

Now, we consider the quantity

L̄(ρ, ν, d) =
I∑

l=1

L∗(δl, ρ, ν, d)q(Ml)

=
1
I

I∑
l=1

L∗(δl, ρ, ν, d) (10)

to be a measure of goodness of fit for the model with respect to the parameters ρ, ν

and d. Thus, the estimates ρ̂, ν̂ and d̂ of ρ, ν and d can be obtained by maximizing

the mean likelihood L̄(ρ, ν, d) in Eq. (10) with respect to these parameters. Hence,

the final estimate for γ is obtained as

̂̂γ = (̂̂γ1,
̂̂γ2, . . . ,

̂̂γn)t = ̂̂γ(ρ̂, ν̂, d̂),

and the estimate for δ is given by

δ̂ =
I∑

l=1

δlp(Ml|q; ρ̂, ν̂, d̂).

As well, from γt = ζ
−ρ/ν
t , the estimate for the time-varying efficiency parameter ζt

is given by ζ̂t = ̂̂γ−ν/ρ

t .
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4 Empirical Analysis

4.1 Data

Our samples for Japan and the United States cover a 42-year period (1960-2001).

We use real GDP as a measure of output. In our statistical analysis, the real GDP

(market prices, billions of national currency at 1995 prices), physical capital (billions

of national currency, beginning-of-year stock) and the number of employed persons

are data presented in Kamps (2006). For the data of physical capital, we use the

aggregate of Kamps’ (2006) private and public capital to represent physical capital.

The data of human capital resulting from schooling are constructed as follows.

As in Hall and Jones (1999) and Caselli (2005), we assume that human capital per

worker, h̃, is measured by the equation

h̃ = exp[ϕ(s)],

where s is the average number of years of schooling. As stated in Hall and Jones

(1999), in this specification ϕ(s) denotes the efficiency of a unit of labor with s

years of schooling relative to one with no schooling (ϕ(0) = 0). The derivative ϕ′(s)

is the return to schooling estimated in a Mincerian wage regression: an additional

year of schooling raises a worker’s efficiency proportionally by ϕ′(s). For the first

four years of schooling, we assume that the rate of return of schooling is 11.7 per-

cent, which corresponds to the average of sub-Saharan African countries reported by

Psacharopoulos and Patrinos (2004). We also assume a rate of return of schooling

of 9.7 percent for the next four years of schooling, and a rate of return of schooling

of 7.5 percent for schooling beyond the eighth year. The values of 9.7 percent and

7.5 percent are, respectively, the average for the world as a whole and the average of

OECD countries from Psacharopoulos and Patrinos (2004). Thus, ϕ(s) is specified

as follows:

ϕ(s) =


0.117 × s if s ≤ 4,
0.117 × 4 + 0.097 × (s− 4) if 4 < s ≤ 8,
0.117 × 4 + 0.097 × 4 + 0.075 × (s− 8) if s > 8.

Therefore, the data for aggregate human capital (skill-adjusted labor) are pro-

duced according to P · exp[ϕ(s)], where P denotes the number of employed persons.

In the present paper, we use data for s constructed by Klenow and Rodriguez-Clare

(2005). Because of source data constraints, however, we could not obtain the data

of human capital per worker in 2001 for both Japan and the United States. Conse-

quently, we generate the data for Japan by using a linear extrapolation based on the
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fact that in both Japan and the United States, human capital per worker increased

linearly in the period 1985-2000.

Figure 1 shows the changes in growth rate of GDP, physical capital and human

capital from 1961 to 2001 in Japan.
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Figure 1: Growth rates of GDP, physical capital and human capital in Japan

In Japan, the average annual growth rates of physical capital during the periods

1960-1969, 1970-1979, 1980-1989 and 1990-2001 are 6.84, 8.57, 4.57 and 3.31 percent,

respectively. The average annual growth rates of human capital during these periods

are 1.13, 1.73, 1.45 and 0.62 percent, respectively.

Figure 2 displays the changes in growth rates of GDP, physical capital and human

capital, respectively, from 1961 to 2001 in United States.
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Figure 2: Growth rates of GDP, physical capital and human capital in U.S.
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In the United States, the average annual growth rates of physical capital during

the periods 1960-1969, 1970-1979, 1980-1989 and 1990-2001 are 4.05, 3.33, 2.90 and

2.98 percent, respectively. The average annual growth rates of human capital during

these periods are 2.70, 4.19, 1.73 and 1.41 percent, respectively.

4.2 Estimation Results

Table 1 presents the estimation results of the returns to scale parameter (ν) the

distribution parameter (δ) and the substitution parameter (ρ) for Japan and the

United States.

Table 1: Estimation results of ν, δ and ρ

Japan U.S.

ν̂ 0.950 0.950

δ̂ 0.089 0.248

ρ̂ −0.360 −0.810

For both Japan and the United States, the estimate of the returns to scale pa-

rameter is 0.950. Hence, the CES production function in both countries is regarded

as decreasing returns to scale during the period 1960-2001. As well, from the esti-

mates of substitution parameters, the elasticities of substitution in Japan and the

United Stated are 1.563 and 5.263, respectively. That is, the elasticity of substitu-

tion between physical and human capital in the United States is more than three

times that of Japan’s. Furthermore, Japan’s estimate of distribution parameter is

very small compared with that of the United States’, that is, 0.089 versus 0.248.

From Eq. (1), we find that if δ is large, then elasticity of output with respect to

physical capital is large and elasticity of output with respect to human capital is

small. Therefore, all other things being equal, Japan’s small estimate of distribution

parameter suggests that elasticity of output with respect to physical capital is small

in comparison with that of the United States.

Table 2 shows the estimates of the efficiency parameter (ζt) for Japan and the

United States.

We set ζ∗t = log(ζ̂t/ζ̂1) to be the efficiency index at time t, so that ζ∗1 corresponds

to the value of the efficiency index in 1960. Figures 4 and 5 illustrate the changes

in efficiency indices from 1960 to 2001 in Japan and the United States, respectively.

As shown in Figure 4, the efficiency index for Japan rose rapidly during the 1960s.

When we consider the factors underlying this trend, the steady increase might be

11



Table 2: Estimation results of ζt

Japan U.S.

1960 1.2546 0.0376

1961 1.3713 0.0385

1962 1.4844 0.0395

1963 1.6055 0.0405

1964 1.7198 0.0416

1965 1.8285 0.0427

1966 1.9626 0.0437

1967 2.1328 0.0443

1968 2.3369 0.0447

1969 2.5554 0.0448

1970 2.7449 0.0449

1971 2.8803 0.0454

1972 3.0087 0.0460

1973 3.0869 0.0464

1974 3.0917 0.0462

1975 3.1077 0.0459

1976 3.1400 0.0455

1977 3.1906 0.0447

1978 3.2588 0.0438

1979 3.3228 0.0427

1980 3.3585 0.0418

Japan U.S.

1981 3.3892 0.0417

1982 3.4197 0.0420

1983 3.4512 0.0431

1984 3.5167 0.0444

1985 3.5988 0.0455

1986 3.6789 0.0461

1987 3.7850 0.0466

1988 3.9170 0.0471

1989 4.0340 0.0476

1990 4.1194 0.0479

1991 4.1422 0.0482

1992 4.1178 0.0488

1993 4.0916 0.0495

1994 4.0935 0.0501

1995 4.1305 0.0508

1996 4.1871 0.0517

1997 4.2023 0.0527

1998 4.1882 0.0540

1999 4.2057 0.0553

2000 4.2448 0.0565

2001 4.2531 0.0573

mainly reflected in the technological changes arising out of the technology imported

from North America and Europe. Since the 1970s, however this growth rate has

declined sharply, particularly from the 1990s onward. As is well documented, from

the mid-1970s, a number of Japanese industries became the owners of leading-edge

global technology. This meant that the pace of imitation-based technological im-

provement declined, and the development of original state-of-art technology in Japan

increased. However, independently creating new technology compared with intro-

ducing imitation technology requires large research and development budgets, and

also has a higher probability of failure, leading to a decreased rate of technological

progress. The average annual growth rates of the efficiency index for Japan during

1960-1969, 1970-1979, 1980-1989 and 1990-2001 are 8.23, 2.15, 2.06 and 0.29 per-

cent, respectively. On the other hand, as shown in Figure 5, the efficiency index for

the United States rose moderately during the 1960s, then gradually declined during

the 1970s. Overall, however, there is an upward tendency from the 1980s onward.

For the United States, the average annual growth rates of the efficiency index in the
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Figure 3: Efficiency index in Japan
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Figure 4: Efficiency index in U.S.

four relevant sub-periods are as follows: 1.97 percent for 1960-1969; -0.56 percent

for 1970-1979; 1.46 percent for 1980-1989; 1.65 percent for 1990-2001.

To examine the efficiency index further, we focus attention on the data of Japan’s

technological knowledge stock obtained from the Cabinet Office (2002). The techno-

logical knowledge stock is defined as the accumulated technological knowledge of the

enterprises which have been pursuing research and development (R&D). We have

the data of Japan’s technological knowledge stock for 1973-2000. Let ωt be techno-

logical knowledge stock. We define ω∗
t = log(ωt/ω1) at time t. It follows that ω∗

1 = 0,

which corresponds to the value in 1973. In addition, we compute ζ∗t = log(ζt/ζ1)

using the estimates of ζt for 1973-2000. Figure 5 depicts the relationship between

the efficiency index and the technological knowledge stock.

As shown by the scatter plot in Figure 5, there is a high positive correlation

between the efficiency index and the technological knowledge stock; the coefficient

of correlation being 0.97. Therefore, we infer that Japan’s efficiency index may reflect

the effectiveness of investment in R&D and the government’s innovation policies.
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Figure 5: The efficiency index and the technological knowledge stock in Japan

5 Concluding Remarks

In the preceding sections, we have presented an extended production function ap-

proach based on Bayesian modeling and its applications to empirical analysis of

Japan and the United States. Unlike earlier studies, in our framework the efficiency

parameter is regarded as being time-varying rather than constant. By estimating the

time-varying efficiency parameter using a Bayesian method, we attempt to under-

stand the changes in efficiency performance at macroeconomic level. Our approach

enables a rigorous investigation of the dynamic behavior of a technical factor that

contributes to economic growth.

The main results can be summarized as follows. The average annual growth

rates of the efficiency index for Japan during 1960-1969, 1970-1979, 1980-1989 and

1990-2001 are 8.23, 2.15, 2.06 and 0.29 percent, respectively. On the other hand, for

the United States, the average annual growth rates of the efficiency index in the four

relevant decades are: 1.97 percent for 1960-1969; -0.56 percent for 1970-1979; 1.46

percent for 1980-1989; and 1.65 percent for 1990-2001. Taking a look at the average

growth rates of the efficiency index in both countries since the 1980s, the efficiency

performance in Japan has declined, while in the United States it has risen.

Although an efficiency index includes various components, as mentioned earlier,

it may be influenced by the technological factors of industries in an economy. A key

constituent of the technological factors is innovation. In connection with the inno-

vative performance and quality of institutions in Japan, for example, Goto (2006)
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emphasizes not only the research and development of individual companies, but also

the importance of reforming the national systems of innovation, such as national

institutions, customs, and policies, which together form the basis of research and

development. As well, OECD (2006) points out that Japan is lagging behind the

U.S. and Europe in the reformation of innovation systems that correspond to cur-

rent changes. Our empirical evidence supports a policy proposal by OECD (2006)

that the reforms of national innovation systems is an important issue for restoring

Japan’s economic growth.
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