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Abstract

In this paper, we propose a new approach to time-series analysis of fac-
tor augmenting technical change based on a constant elasticity of substitu-
tion (CES) production function. To estimate trends in labor- and capital-
augmenting technical change, smoothness priors are introduced and Bayesian
linear models are constructed. Parameter estimations are then calculated using
the methods of maximum likelihood and Bayesian model averaging. As a prac-
tical application, we examine the technical changes in Taiwan and South Korea
at the macroeconomic level. The results of this analysis illustrate that our
Bayesian approach can capture the movements of technical change rigorously
compared with conventional approaches.
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1 Introduction

Understanding trends in technical change has significant implications when fore-
casting long-term economic performance. A measure of technical change is seen as
a key issue in empirical studies of economic growth. However, even if we can define
technical progress within the framework of a theoretical analysis, it is very difficult
to quantify that actual aspect. Therefore, models and statistical methods for esti-
mating factors that reflect technical progress become indispensable tools. The aim
of this paper is to develop a Bayesian approach to time-series analysis for labor- and
capital-augmenting technical change.

The starting point for this type of econometric analysis is the construction of a
framework based on production functions. Many researchers use the Cobb-Douglas
production function or the CES production function with Hicks neutral technical
change. It should be noted, however, that there are some drawbacks with these.
For example, although the Cobb-Douglas production function assumes an elasticity
of substitution equal to one, its true value in an economy is not necessarily very
close to unity. Also, observations that the shares of the labor income and the
capital income change in an almost constant manner during a certain period, are
often considered as evidence supporting the use of the Cobb-Douglas production
function. However, as pointed out by Sato (1970), the invariance of each share does
not guarantee that the functional form is consistent with Cobb-Douglas type. As for
the CES production function with Hicks neutral technical change, the implication is
that the efficiencies in production of labor and capital are identical. This is a very
strong assumption, and obviously unusual: the statistical analyses based on such
CES production functions have a narrow focus and scope. Hence, any discussion
based on such analysis becomes extremely limited.

Considering these problems in statistical analyses that can be seen in many pre-
vious studies, we adopt a CES production function with factor-augmenting (biased)
technical change. The term biased technical change refers to a situation in which
the efficiency of capital and the efficiency of labor exhibit different growth rates.
Hence, movements in the capital- and labor-augmenting technical progress can be
clearly identified.

Recent studies related to the present paper include Antràs (2004), Klump et al.
(2007b) and Sato and Morita (2009).1 Antràs (2004) and Klump et al. (2007b)
examined the econometric estimations of production functions using data stemming
from the US economy. Sato and Morita (2009) estimated the growth rates of capital
and labor efficiencies for the Japanese and US economies according to equations

1See Klump et al. (2007a) for a review article on empirical studies of CES production functions.
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that are derived in Sato (1970). These articles treat CES production functions with
technical change that augment the efficiency of both capital and labor, and present
careful analyses. Nevertheless, we consider that there is still room for improvement.
For specifications for the trends in technical change, Antràs (2004) follows the bulk
of the literature in assuming that the efficiencies in both labor and capital grow at
constant rates.2 Also, Klump et al. (2007b) assumes constant growth rates as well
as a form that includes exponential, logarithmic and hyperbolic growth as special
cases. It seems to give rise to inflexible models because the actual technical progress
might not necessarily show the trends that Antràs (2004) and Klump et al. (2007b)
assume. Moreover, even if the fit of the model is suitable for the relevant period,
the forecast might be wide of the mark when the assumed trends are not forthcom-
ing. For an estimation of the factor-augmenting technical changes, Sato and Morita
(2009) did not a priori assume exponential, hyperbolic, or any other form. In that
sense, the method of Sato and Morita (2009) might be superior to those of Antràs
(2004) and Klump et al. (2007b). However, we think that problems will arise as
their proposed method cannot calculate the elasticity of factor substitution directly
from a CES production function with factor-augmenting technical change. To esti-
mate the capital- and labor-augmenting technical changes, they use the elasticity of
substitution derived from a CES production function with Hicks neutral technical
change as a proxy.

Unlike Antràs (2004), Klump et al. (2007b) and Sato and Morita (2009), we
address the estimation of this factor-augmenting technical change from a Bayesian
perspective. Specifically, we combine the use of a Bayesian linear modeling ap-
proach in Akaike (1980) and a smoothness-priors approach in Kitagawa and Gersch
(1996). By introducing the smoothness priors, we can set up the model with a suf-
ficiently flexible structure to capture the dynamic features of the economic system,
hence our model is very useful for estimating complicated behaviors of economic
variables that cannot be observed directly. Studies on the application of such an
approach to the analyses of dynamic structure of an economy are rare. The excep-
tions include Kyo and Noda (2008) and Noda and Kyo (2009a, 2009b). In Kyo and
Noda (2008), smoothness priors were incorporated into a statistical model based
on a Cobb-Douglas production function, and addressed, by applying Bayesian tech-
niques, the estimation of trends in China’s total factor productivity (TFP). Noda
and Kyo (2009a) also incorporated a smoothness prior in a statistical model based
on a Cobb-Douglas form for the production function, and estimated the trends in
TFP for the Japanese prefectural economies. Based on a CES production function

2See, for example, Kotowitz (1968), Panik (1976), Kalt (1978), Jalava et al. (2006) and Masanjala
and Papageorgiou (2004).
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with Hicks neutral technical change, Noda and Kyo (2009b) applied the smoothness
priors approach in a comparative analysis of the technical change in the Japanese
and U.S. macro-economies. Recall, however, that there are some drawbacks men-
tioned above in the Cobb-Douglas production functions and the CES production
functions with Hicks neutral technical change.

In our framework, the efficiencies of capital and labor are regarded as time-
varying parameters, and thereby introduce dynamic features into capital- and labor-
augmenting technical change. Parameter estimations are then carried out using
the methods of maximum likelihood and Bayesian model averaging. As a practical
application of the proposed Bayesian approach, we attempt to estimate the technical
changes in the macro-economies of Taiwan and South Korea. The results of this
analysis illustrate that our Bayesian approach can treat movements in technical
change in more detail compared with the conventional production function approach,
and therefore provide a useful insight into the empirical study of technical change.

The rest of the paper is organized as follows. In Section 2, we construct an
analytical framework based on Bayesian models via a CES production function with
factor augmenting technical change. Section 3 presents the basic scheme for param-
eter estimation and a procedure to apply Bayesian model averaging. In Section 4,
our proposed approach is applied to time-series analysis of the macro economies in
South Korea and Taiwan. Finally, Section 5 concludes the paper.

2 Bayesian Modeling based on a CES Production Func-
tion

Consider an aggregative economy in which each year a single homogeneous good is
produced by two factors of production, capital and labor, under constant returns
to scale technology. We follow David and van de Klundert (1965) by writing the
production function

Qt =
[
(AtKt)−ρ + (BtLt)−ρ

]− 1
ρ
, (1)

where the subscript t indexes yearly increments, Qt the value added, Kt capital, and
Lt labor. Note that Kt and Lt are stocks, that is, amounts observed at one point in
time, while Qt is a flow. The model in Eq. (1) is a specification of the production
function with factor-augmenting technical change.3 The elasticity of factor substitu-
tion equals 1/(1+ρ), hence ρ is termed the substitution parameter. The coefficients
At and Bt indicate the efficiency in production of capital and labor, respectively.

3See Sato and Beckmann (1968) for a derivation of the generalized form of such production
functions.
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In addition, variation in At with time is interpreted as capital-augmenting technical
change and variation in Bt over time is interpreted as labor-augmenting technical
change.

We can rewrite Eq.(1) by setting at = A−ρ
t , bt = B−ρ

t , x1t = (−1/ρ)K−ρ
t ,

x2t = (−1/ρ)L−ρ
t and yt = (−1/ρ)Q−ρ

t , in which notation Eq.(1) becomes

yt = atx1t + btx2t. (2)

Furthermore, we augment Eq. (2) to include a random disturbance:

yt = atx1t + btx2t + ϵt, (3)

where ϵt is taken to be Gaussian white noise.
Noda and Kyo (2009b) applied a Bayesian approach using smoothness priors of

Kitagawa and Gersch (1996) to estimate the Hicks neutral technical change. This
Bayesian approach can also be applied in estimating the time-varying parameters
at and bt. However, it may be difficult to obtain meaningful estimates for at and
bt simultaneously, because there is a remarkable multicollinearity between the time-
series data for x1t and x2t.

To ameliorate this difficulty, we simplify the model in Eq. (3) by treating bt as a
constant b̃, i.e., we put b1 = b2 = · · · = b̃. Then, the model reduces to the following
form:

yt = atx1t + b̃x2t + ϵ
(1)
t , (4)

where b̃ is an unknown parameter, and ϵ
(1)
t is a Gaussian white noise with ϵ

(1)
t ∼

N(0, σ2). For the model in Eq. (4), the time-varying parameter at is treated as a
random variable from a Bayesian viewpoint. Thus, we use the following smoothness
prior:

at − 2at−1 + at−2 = ν1t, (5)

where ν1t is a Gaussian white noise with ν1t ∼ N(0, σ2/d2
1), and d1 > 0 is an unknown

parameter. It is also assumed that ϵ
(1)
t and ν1t are independent of each other. To

define a proper prior distribution for the at’s it is necessary to set a0 and a−1. Here,
all of the parameters ρ, b̃, σ2, a0, a−1 and d1 are considered as unknown constants.
When the values of these parameters are given, a system of linear Bayesian equations
for at’s can be constructed based on Eqs. (4) and (5). From this, we can obtain a
posterior distribution for the at’s by using the Bayesian linear modeling method.

Alternatively, in an analogous manner, the model in Eq. (3) can also be simplified
by treating at as constant, i.e., we assume that a1 = a2 = · · · = ã. Thus, the model
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becomes the following form:

yt = ãx1t + btx2t + ϵ
(2)
t , (6)

where ã is an unknown parameter, ϵ
(2)
t is a Gaussian white noise with ϵ

(2)
t ∼ N(0, σ2).

Here we treat bt as a random variable and use the smoothness prior as follows:

bt − 2bt−1 + bt−2 = ν2t, (7)

where ν2t is a Gaussian white noise with ν2t ∼ N(0, σ2/d2
2), and d2 > 0 is an unknown

parameter. Again, we assume that ϵ
(2)
t and ν2t are independent of each other, and

that the parameters ρ, ã, σ2, b0, b−1 and d2 are unknown constants. When the
values of these parameters are given, a system of Bayesian linear equations for the
bt’s can be constructed based on Eqs. (6) and (7). Then we can obtain a posterior
distribution for bt’s by using the Bayesian linear modeling method.

Thus, we have two similar Bayesian models that simplify the model of Eq. (3),
specifically, those defined by the pair Eqs. (4) and (5) and the pair Eqs. (6) and (7).
By combining the estimates from the two Bayesian models and using the Bayesian
model averaging (BMA) approach, we can obtain synthetic estimates for the model
in Eq. (3). Note that ρ and σ2 are parameters common to the two models.

3 Parameter Estimation

3.1 Basic Scheme

We now present a procedure for estimating the time-varying parameter at, based
on the constant-b Bayesian model, Eqs. (4) and (5). Assume that we have a data
set for Qt, Kt and Lt for a period of n points as t = 1, 2, . . . , n. From Eq. (4), the
likelihood of a = (a1, a2, . . . , an)t and the other related parameters is given by:

f(Q|a, ρ, b̃, σ2) = J

(
1√

2πσ2

)n

exp

[
− 1

2σ2
||y − Xa − b̃x||2

]
,

where J is the Jacobian of the transformation from Q to y defined by J = Πn
t=1(∂yt/∂Qt).

The other symbols are defined as follows:

Q = (Q1, Q2, . . . , Qn)t,

y = (y1, y2, . . . , yn)t,

X = diag(x11, x12, · · · , x1n),

x = (x21, x22, . . . , x2n)t,

and || ∗ || denotes the Euclidean norm.
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When the values of σ2, c = (a−1, a0)t, and d1 are given, from Eq. (5) the prior
density for a is given by:

π(a|σ2, c, d1) =

(
d1√
2πσ2

)n

exp

[
− d2

1

2σ2
||Da + Bc||2

]
,

where

D =



1 0 · · · · · · · · · 0

−2 1
. . .

...

1 −2 1
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 1 −2 1


, B =


1 −2
0 1
0 0
...

...
0 0

 .

Next, we obtain the marginal likelihood of the related parameters as

L(ρ, b̃, σ2, c, d1) =
∫ ∫

· · ·
∫

f(Q|a, ρ, b̃, σ2)π(a|σ2, c, d1)da (8)

= J

(
1√

2πσ2

)n

dn
1 det(W tW )−

1
2 exp

[
− 1

2σ2
||h − Wâ||2

]
,

where

W =
[

X
−d1D

]
, h =

[
y + b̃x
d1Bc

]
,

and â = (W tW )−1W th denotes the mean of a posterior density

f(a|Q; ρ, b̃, σ2, c, d1) =
f(Q|a, ρ, b̃, σ2)π(a|σ2, c, d1)∫∫

· · ·
∫
f(Q|a, ρ, b̃, σ2)π(a|σ2, c, d1)da

, (9)

for a. Therefore, the estimates, ρ̂, ̂̃b, σ̂2, ĉ, and d̂1 for the related parameters can
be obtained by maximizing the likelihood L(ρ, b̃, σ2, c, d1) in Eq. (8).

Computationally, if the values of ρ and d1 are given, then a together with c

and b̃ can be estimated simultaneously by using the least squares method (see for
example, Jiang, 1995). That is, when we put

z =
[

y
0n

]
, V =

[
X O x

d1D d1B 0n

]
, β =

 a
c

b̃


with O denoting a zero matrix, and 0n being an n-dimensional vector of zeros, the
estimate,

β̂(ρ, d1) =
(
ât(ρ, d1), ĉt(ρ, d1),

̂̃
b(ρ, d1)

)t
= (V tV )−1V tz,
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for β is obtained. Thus, by substituting b̃ = ̂̃b(ρ, d1) and c = ĉ(ρ, d1) into L(ρ, b̃, σ2, c, d1)
in Eq. (8), the partial likelihood of ρ, σ2 and d1 can be obtained as

L1(ρ, σ2, d1) = L(ρ,
̂̃
b, σ2, ĉ, d1). (10)

Correspondingly, a conditional posterior density, g(a|Q; ρ, σ2, d1), for a can be de-
rived from f(a|Q; ρ, b̃, σ2, c, d1) in Eq. (9) by:

g(a|Q; ρ, σ2, d1) = f
(
a|Q; ρ,

̂̃
b(ρ, d1), σ2, ĉ(ρ, d1), d1

)
.

Moreover, the estimate d̂1 of the parameter d1 is obtained by maximizing the
marginal likelihood L1(ρ, σ2, d1) in Eq. (10) for given ρ and σ2. Thus, we obtain
the partial likelihood of ρ and σ2 as

L∗
1(ρ, σ2) = L1(ρ, σ2, d̂1). (11)

Note that the procedure for estimating the parameter b = (b1, b2, . . . , bn)t in the
constant-a Bayesian model, Eqs. (6) and (7), is the same, and is omitted here for
brevity. For this model, we can obtain the partial likelihood L2(ρ, σ2, d2) of ρ, σ2

and d2 by a procedure similar to the above basic scheme. Then the partial likelihood
of ρ and σ2 can be obtained by using the maximum likelihood estimate d̂2 of d2 as

L∗
2(ρ, σ2) = L2(ρ, σ2, d̂2). (12)

3.2 Bayesian Model Averaging Approach

To obtain the estimates for ρ and σ2 and the final estimates for parameters a and b of
the model in Eq. (3), we use the BMA approach as follows. Here, we reconsider the
two Bayesian models with constant-b and constant-a; these models are identified here
as M1 and M2 respectively. ¿From the BMA perspective (see for example, Claeskens
and Hjort, 2008), it is assumed that all models {M1, M2} are uncertain and all have
equal uncertainties. Thus, we use a uniform prior for the models {M1, M2} as follows:

q(M1) = q(M2) =
1
2
,

where q(Mi) is the prior probability for the i-th model Mi (i = 1, 2). As shown in
the preceding subsection, a partial likelihood for the model Mi is L∗

i (ρ, σ2), as given
in Eqs. (11) and (12). Therefore, a conditional posterior probability for model Mi

is given by

p(Mi|Q; ρ, σ2) =
L∗

i (ρ, σ2)q(Mi)
L∗

1(ρ, σ2)q(M1) + L∗
2(ρ, σ2)q(M2)

=
L∗

i (ρ, σ2)
L∗

1(ρ, σ2) + L∗
2(ρ, σ2)

.
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Moreover, from the basic estimation scheme just mentioned, we can see that for
model M1 given ρ and d1, the posterior mean of a is â(ρ, d1) and the estimate of

b = b̃1n is ̂̃b(ρ, d1)1n. Similarly, for model M2 given ρ and d2, the posterior mean
of b is b̂(ρ, d2) and the estimate of a = ã1n is ̂̃a(ρ, d2)1n. Therefore, based on the
Bayesian model averaging approach, the synthetic estimates for a and b are given
by (see, Draper, 1995):

̂̂a(ρ, σ2) = p(M1|Q; ρ, σ2)â(ρ, d̂1) + p(M2|Q; ρ, σ2)̂̃a(ρ, d̂2)1n,̂̂
b(ρ, σ2) = p(M2|Q; ρ, σ2)b̂(ρ, d̂2) + p(M1|Q; ρ, σ2 )̂̃b(ρ, d̂1)1n.

Furthermore, we consider the quantity

L(ρ, σ2) = L∗
1(ρ, σ2)q(M1) + L∗

2(ρ, σ2)q(M2)

=
1
2

(
L∗

1(ρ, σ2) + L∗
2(ρ, σ2)

)
(13)

to be a measure of the fitting reliability for the model in Eq. (3) with respect
to the parameters ρ and σ2. Thus, the estimates ρ̂ and σ̂2 of ρ and σ2 can be
obtained by maximizing the mean likelihood L(ρ, σ2) in Eq. (13) with respect to
these parameters. Hence, the final estimates for a and b are obtained as

̂̂a = ̂̂a(ρ̂, σ̂2), ̂̂
b = ̂̂b(ρ̂, σ̂2).

4 Application

4.1 Data Sources

To estimate the CES production function for Taiwan, we use real GDP (Qt) and
non-land fixed physical capital (Kt) from Chow and Lin (2002).4 In addition, labor
data (Lt) are calculated according to the product of the number of employed workers
from Mizoguchi (2008) and the quality of human capital per worker from Chow and
Lin (2002). The annual time-series data for Taiwan cover the period from 1951 to
1999.

Also, we conducted parameter estimations of the CES production function for
South Korea using macro-data taken from Pyo (2001), which are real GDP (Qt),
physical capital (Kt), and the number of employed workers (Lt). The annual time-
series data for South Korea covers a similar period, from 1946 to 1999.

4The non-land fixed capital comprises fixed assets excluding land values. Chow and Lin (2002)
excluded land values and cumulative depreciation from total gross fixed assets to obtain a net value
for non-land fixed assets.
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4.2 Results and Discussion

When we calculated the estimation procedure presented in Section 3, we used yearly
data with values from each year divided by the value in the initial year, that is,
Qt/Q1, Kt/K1 and Lt/L1 for t = 1, 2, . . . , n, where t = 1 denotes the initial year
and t = n denotes the final year in our sample. Considering this data, we follow de
La Grandville (2009) by rewriting Eq. (1) as

Qt

Q1
=

[
δ
(
ht

Kt

K1

)−ρ
+ (1 − δ)

(
gt

Lt

L1

)−ρ
]− 1

ρ

. (14)

In Eq. (14), we call ht and gt the modified efficiencies in production of capital and
labor, respectively. Under the assumptions h1 = g1 = 1 and competitive factor
imputation, δ denotes the share of capital income from the total income at base
year t = 1 and (1 − δ) denotes the corresponding share of labor income (see, de La
Grandville, 2009 for details). Note that we have relations at = A−ρ

t = δh−ρ
t and

bt = B−ρ
t = (1 − δ)g−ρ

t .
As mentioned earlier, the CES production function with Hicks neutral technical

change is a special case of the CES production function with factor augmenting
technical change. To confirm the superiority of the factor augmenting type as a
statistical model, we estimated not only the CES production function with factor
augmenting technical change in the present paper, but also the CES production
function with Hicks neutral technical change, such as Noda and Kyo (2009b) using
the data set mentioned above. As a result, when we use the Taiwan data, the value of
the Akaike information criterion (AIC), given Hicks neutral type is −17.052, while
that for the factor augmenting type is −398.025. Also, when we use the South
Korea data, the value of AIC, given Hicks neutral type is −0.017, while that for
the factor augmenting type is −367.431. Consequently, from the viewpoint of the
minimum AIC model selection procedure, it is obvious that the factor augmenting
type is better model. Thus, we present only the results of the estimation for the
CES production function with factor augmenting technical change.

For Taiwan, the estimated results of the constant parameters are as follows:
d̂1 = 3.4924, d̂2 = 4.4152, ρ̂ = −0.09418, and σ̂2 = 4.0896× 10−5. For South Korea,
these are: d̂1 = 10.7064, d̂2 = 14.3917, ρ̂ = −0.1504, and σ̂2 = 4.6191 × 10−4.
The estimate for the elasticity of substitution can be calculated from the estimate
ρ̂. Specifically, these estimates for Taiwan and South Korea are 1.104 and 1.177,
respectively. De La Grandville (2009) derived and proved two remarkable theorems
on the relationship between the elasticity of substitution and performance of macro-
economy. These can be stated as follows:
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(i) If an economy is driven by a CES production function exhibiting capital- and
labor-augmenting technical progress, then at any stage of its development per
capita income is an increasing function of its elasticity of substitution.

(ii) If an economy is driven by a CES production function exhibiting capital- and
labor-augmenting technical progress, then at any stage of its development the
cost of producing one unit of national product is a decreasing function of the
elasticity of substitution.

According to these two theorems, we can conjecture that the long-term per capita
income in South Korea may be greater than that in Taiwan, and the long-term cost
of producing one unit national product in South Korea may be lower than in Taiwan.

Tables 1 and 2 show the estimates ât and b̂t for Taiwan and South Korea respec-
tively.

Table 1: Estimated results of the time-varying parameters for Taiwan

ât ât b̂t b̂t

1951 0.69462 1976 0.72444 1951 0.86421 1976 0.97354
1952 0.69677 1977 0.72551 1952 0.87066 1977 0.97838
1953 0.69865 1978 0.72671 1953 0.87635 1978 0.98364
1954 0.70021 1979 0.72757 1954 0.88116 1979 0.98788
1955 0.70140 1980 0.72829 1955 0.88486 1980 0.99168
1956 0.70237 1981 0.72884 1956 0.88795 1981 0.99478
1957 0.70324 1982 0.72918 1957 0.89080 1982 0.99699
1958 0.70405 1983 0.72984 1958 0.89344 1983 1.00015
1959 0.70502 1984 0.73075 1959 0.89670 1984 1.00422
1960 0.70609 1985 0.73148 1960 0.90033 1985 1.00776
1961 0.70730 1986 0.73257 1961 0.90451 1986 1.01254
1962 0.70868 1987 0.73384 1962 0.90933 1987 1.01817
1963 0.71029 1988 0.73490 1963 0.91501 1988 1.02337
1964 0.71209 1989 0.73579 1964 0.92147 1989 1.02806
1965 0.71363 1990 0.73652 1965 0.92710 1990 1.03222
1966 0.71484 1991 0.73730 1966 0.93169 1991 1.03647
1967 0.71581 1992 0.73801 1967 0.93555 1992 1.04056
1968 0.71665 1993 0.73871 1968 0.93907 1993 1.04472
1969 0.71763 1994 0.73939 1969 0.94313 1994 1.04880
1970 0.71891 1995 0.74008 1970 0.94839 1995 1.05300
1971 0.72044 1996 0.74081 1971 0.95466 1996 1.05735
1972 0.72178 1997 0.74145 1972 0.96023 1997 1.06128
1973 0.72244 1998 0.74187 1973 0.96329 1998 1.06438
1974 0.72249 1999 0.74237 1974 0.96442 1999 1.06763
1975 0.72311 1975 0.96774
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Table 2: Estimated results of the time-varying parameters for South Korea

ât ât b̂t b̂t

1946 0.49844 1973 0.48799 1946 0.54203 1973 0.53809
1947 0.49712 1974 0.48837 1947 0.54107 1974 0.53880
1948 0.49577 1975 0.48861 1948 0.54007 1975 0.53942
1949 0.49414 1976 0.48860 1949 0.53876 1976 0.53986
1950 0.49235 1977 0.48810 1950 0.53721 1977 0.53991
1951 0.49099 1978 0.48699 1951 0.53604 1978 0.53943
1952 0.49024 1979 0.48552 1952 0.53545 1979 0.53863
1953 0.49018 1980 0.48420 1953 0.53556 1980 0.53793
1954 0.49019 1981 0.48389 1954 0.53577 1981 0.53810
1955 0.48990 1982 0.48486 1955 0.53573 1982 0.53940
1956 0.48915 1983 0.48686 1956 0.53529 1983 0.54167
1957 0.48792 1984 0.48930 1957 0.53445 1984 0.54440
1958 0.48625 1985 0.49176 1958 0.53321 1985 0.54722
1959 0.48428 1986 0.49419 1959 0.53166 1986 0.55005
1960 0.48235 1987 0.49632 1960 0.53010 1987 0.55263
1961 0.48095 1988 0.49792 1961 0.52904 1988 0.55478
1962 0.48029 1989 0.49882 1962 0.52864 1989 0.55636
1963 0.48040 1990 0.49929 1963 0.52894 1990 0.55757
1964 0.48106 1991 0.49951 1964 0.52971 1991 0.55854
1965 0.48189 1992 0.49960 1965 0.53063 1991 0.55937
1966 0.48280 1993 0.49983 1966 0.53161 1993 0.56021
1967 0.48366 1994 0.50021 1967 0.53256 1994 0.56109
1968 0.48457 1995 0.50045 1968 0.53360 1995 0.56175
1969 0.48552 1996 0.50020 1969 0.53471 1996 0.56192
1970 0.48632 1997 0.49947 1970 0.53570 1997 0.56164
1971 0.48697 1998 0.49894 1971 0.53656 1998 0.56145
1972 0.48748 1999 0.49917 1972 0.53731 1999 0.56177

Because, by definition, at = A−ρ
t = δh−ρ

t and bt = B−ρ
t = (1 − δ)g−ρ

t , we obtain
a
−1/ρ
t = At = δ−1/ρht and b

−1/ρ
t = Bt = (1 − δ)1/ρgt. Furthermore, the relations

At/A1 = ht/h1 and Bt/B1 = gt/g1 hold. In other words, the index of efficiency
of capital (At/A1) synchronizes with the index of the modified efficiency of capital
(ht/h1). A similar remark holds between (Bt/B1) and (gt/g1). We can obtain the
estimates Ât and B̂t from â

−1/ρ̂
t and b̂

−1/ρ̂
t , respectively.
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Figure 1 presents graphs for (Ât/Â1) × 100 and (B̂t/B̂1) × 100 for Taiwan.
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Figure 1: The indices of capital efficiency and labor efficiency for Taiwan

From Figure 1, we find clearly that the efficiencies of labor and capital in Taiwan
have changed at different growth rates. In particular, the rapid growth in labor effi-
ciency is remarkable. This result suggests that labor-augmenting technical progress
had contributed much to Taiwan’s economic growth during the five-decade period.

Figure 2 shows the graphs of (Ât/Â1)× 100 and (B̂t/B̂1)× 100 for South Korea.
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Figure 2: The indices of capital efficiency and labor efficiency for South Korea

The following features are seen from Figure 2. First, movements in labor and
capital efficiencies for South Korea are more complex than those of Taiwan. More-
over, we find a similar pattern between the efficiencies, although the curves differ in
magnitude. An upward tendency is seen in both over the period from the 1980s to
the early 1990s. However, this movement stagnated during the late 1990s.
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The following conclusions are obtained from a comprehensive viewpoint. First,
there is a possibility that capital efficiency and labor efficiency have distinctly dif-
ferent trends. Figure 1 for Taiwan is one such example. Moreover, as shown in
Figure 2 for South Korea, movements of efficiencies of capital and labor may be
non-monotonic. Thus, our practical application suggests that modeling with a high
degree of flexibility is indispensable in capturing the trends in technical change. In
other words, the model should be able to deal with the diversity and complexity in
the behavior of technical change. However, many earlier studies impose stringent
constraints on the trends in efficiencies of capital and labor, such as the efficien-
cies being exponentially dependent on time. Thus, conventional approaches that
lack the necessary flexibility within the model cannot estimate trends in technical
change precisely, and might be misleading.

5 Conclusion

Recently, the underlying role of technical progress in economic growth has become
increasingly important. However, statistical methods for estimating technical change
have so far not been sufficiently developed. We improve the conventional produc-
tion function based approaches by using Bayesian modeling, and propose a new
methodology in the time-series analysis of capital- and labor-augmenting technical
change.

As an illustration, we applied our proposed approach to an analysis of data ob-
tained for Taiwan and South Korea. Our main results can be summarized as follows:
The Taiwanese economy experienced rapid growth in labor efficiency from 1950s to
1990s, while capital efficiency showed a modest growth during the same period.
This implies that the labor-augmenting technical progress had contributed much to
Taiwan’s economic growth over the period. For South Korea, a similar pattern was
seen for labor and capital efficiencies, although each developed at different levels and
growth rates. In particular, both had shown an upward tendency from the 1980s to
the early 1990s, but movements stagnated during the late 1990s. Our estimations
suggest that to sustain future economic growth in South Korea, policies need to be
established to promote both capital- and labor-augmenting technical progress.

To our knowledge, attempts at analyzing concepts like technical progress as in the
present study have not yet been reported. The Bayesian perspective as contributed
here sheds light on an approach to capture such concepts as the factor augmenting
technical change. In particular, because our approach enables a statistical analysis
of trends in technical change in a rigorous manner by a flexible structure of the
models introducing smoothness priors, it has definite superiority over conventional
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approaches. Therefore, our approach can be regarded as a promising tool for an
empirical study of technical change.
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