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Abstract 

This paper presents a theoretical and statistical framework for measuring the benefits of a morbidity 
and mortality risk reduction project. To consider the mechanisms by which the project changes the 
probability of death or injury/illness, we extend the basic standard model defining the value of a sta-
tistical life (VSL) or the value of a statistical injury (VSI). The extension is done by introducing the 
probability of occurrence of events that cause death or injury/illness and the conditional probability of 
survival or recovery to the basic standard model. Since the project's benefits are defined by the ex-
tended model and are associated with VSL and VSI, the benefit transfer approach can be applied to 
measure them. Moreover, assuming that individual data on the death or injury/illness of individuals 
who have experienced a disaster or accident are available, we provide a statistical approach for deriv-
ing their conditional probabilities of survival and recovery based on a binary response model by con-
sidering sample selection. Furthermore, a case of out-of-hospital cardiopulmonary arrest and emer-
gency medical services (EMS) transport was chosen as a specific event that could cause death or in-
jury/illness. The proposed binary response model approach was applied to this case using Japanese 
Utstein-style data. Using the estimation results, we predicted the changes in the probabilities of sur-
vival and recovery when the time between ambulance call and arrival at the patient’s side was reduced 
by one minute, and the benefits of the project were measured. 
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1. Introduction 

Saving lives is an essential objective of the public sector. For example, some projects or policies 

in areas such as health care, environment, and transportation are public goods that reduce morbidity 

and mortality risks and benefit a large number of people. It is well known that a cost-benefit analysis 

is required to ensure efficient projects or policies. This analysis is a crucial element in evaluating pro-

jects or policies, especially in Organisation for Economic Co-operation and Development (OECD) 

member countries and is a significant target for projects or policies related to human life (OECD, 

2012). In recent years, since human lives have been exposed to various risks, such as frequent natural 

disasters, the spread of new viruses, and an outbreak of international conflicts, it is necessary to de-

vote more effort to valuing and efficiently implementing morbidity and mortality risk reduction pro-

jects or policies. 

To measure the benefits of morbidity and mortality risk reduction, the marginal willingness to pay 

(MWTP) for reduction in the probability of death or injury/illness can be employed as a shadow price. 

The MWTP for reduction in the probability of death is called the value of a statistical life (VSL). There 

is a large body of research on its theory and estimation (Hammitt, 2000; Viscusi and Aldy, 2003). The 

MWTP for reduction in the probability of nonfatal injury/illness is called the value of a statistical 

injury (VSI) and it is subject to the same framework as the VSL. VSL and VSI are based on the stand-

ard model originating from Schelling (1968), Jones-Lee (1974), Viscusi (1978), and Weinstein et al. 

(1980), which are defined by the von Neumann-Morgenstern expected utility. Approaches for estimat-

ing them are roughly classified into revealed and stated preference methods. The revealed preference 

method uses data observed in the actual market, such as industrial and traffic accidents, for which 

results are considered reliable. This is because they reflect the trade-offs that individuals face in prac-

tice with respect to morbidity and mortality risk, and many policy analyses in the United States support 

this method (Kniesner and Viscusi, 2019). The stated preference method is a direct questionnaire about 

the trade-off between the probability of death or injury/illness and wealth or money. Although this 

method can estimate the VSL for risks that are not captured by the revealed preference method, there 

is no guarantee that the hypothetical choices reflect the trade-offs that would take place in the real 

market. Therefore, it is necessary to check the reliability of the estimation results by validity tests such 

as a scope test (e.g., Viscusi, 2014). Many studies have been conducted to improve the generality and 

reliability of both estimation approaches. For example, Viscusi and Gentry (2015) showed that the 

VSL estimated from revealed preference data in the labor market is rea-sonable for a benefit transfer 

to transportation policy. Corso et al. (2001) illustrated the effectiveness of visual aids in making re-

spondents more accurately aware of changes in mortality risk in the stated preference methods. Re-

cently, Alberini and Ščasný (2021) proposed a VSL estimation method for cancer mortality risk based 

on the contingent valuation method, showing the respondents the probability of getting and surviving 

cancer. They also evaluated its reliability and validity. Herrera-Araujo et al. (2022) provided a method 
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to remove bias in the VSL estimates obtained from hypothetical non-marginal risk reduction in ques-

tionnaires.  

When measuring the actual benefits of a project or policy that reduces morbidity and mortality risk, 

it is necessary to estimate the VSL, VSI, and the changes in the probability of death and injury/illness 

associated with the project or policy. People face a variety of events that cause death and injury/illness 

on a daily basis; thus, the project or policy can affect the morbidity and mortality risk in the ex-ante 

or ex-post state of such events. For instance, a project such as vaccination to prevent viral infections 

and road maintenance to minimize traffic accidents will reduce the probability of an event causing 

death and injury/illness. Further, projects such as providing emergency medical care and developing 

viral therapeutics will change the conditional probability of survival under the condition that an event 

caused death or injury/illness occurs, as well as the conditional probability of recovery under the con-

dition of survival from that event. Both projects will change the probabilities of death and injury/illness, 

but the mechanisms are indubitably different. In particular, it is implausible to ignore changes in the 

probability of recovery or rehabilitation due to a project or policy because of the remarkable techno-

logical advances in emergency medical services (EMS). For example, Kitamura et al. (2010) reported 

that using an automated external defibrillator (AED) in the early stages of ventricular fibrillation im-

proves survival and rehabilitation in patients with out-of-hospital cardiopulmonary arrest. Accordingly, 

to measure the benefits of a project or policy that reduces morbidity and mortality risk, it is necessary 

to develop a methodology that considers the VSL, VSI and the mechanism by which the project or 

policy changes the probability of death and injury/illness. However, to our knowledge, no study has 

proposed such a methodology, and most studies have aimed to provide more reliable VSL and VSI 

estimates. Nonetheless, some studies have measured the benefits of pro-jects or policies by employing 

VSL and VSI. Sund et al. (2012) evaluated the benefits of improving the probability of survival by 

providing defibrillation in both ambulances and fire services for out-of-hospital cardiopulmonary ar-

rest in Stockholm, Sweden, based on VSL estimates. Echazu and Nocetti (2020) used VSL and VSI 

estimates to measure the social willingness to pay to reduce the morbidity and mortality risk from the 

spread of novel coronaviruses in the United States. However, both studies can be regarded as the prac-

tical utilization of VSL and VSI to measure the benefits of specific projects or policies and did not aim 

to provide a general methodology for measuring the benefits by employing them.  

Therefore, this study presents a theoretical framework for measuring the benefits of projects and 

policies that aim to reduce morbidity and mortality risk, explicitly considering the mechanisms by 

which they change the probability of death or injury/illness. The basic standard model defining VSL 

depends only on whether the utility is death or survival and not on the cause of death. Carthy et al. 

(1999) built one of the models in which utility depends on death and injury. By combining the con-

tingent valuation method and the standard gamble method, an approach to reliably measure VSL was 

proposed, but the causes of death and injury were not considered. Scotton and Taylor (2011) extended 
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the model to one in which utility depends on events that cause death and estimated hedonic wage 

functions relying on it. However, nonfatal injuries and illnesses were not included. Hence, we intro-

duce not only death and injury/illness but also the multiple events that cause them to the standard 

model, thus formulating the probability of occurrence of an event causing death or injury/illness, the 

conditional probability of survival, and the probability of recovery under the condition that the event 

occurred. Consequently, it becomes clear how a project or policy affects these three probabilities and 

produces benefits. Furthermore, we relate the benefits of projects and policies to VSL and VSI using 

first-order approximations with respect to these three probabilities. This allows for the benefit trans-

fer of VSL and VSI estimates in other studies. Such a benefit transfer approach is widely used in cost-

benefit analyses for projects or policy evaluations (e.g., Hammitt and Robinson, 2011; Johnston et al., 

2015; Smith et al., 2022). We also provide theoretical evidence on how VSL and VSI differ across 

events that cause death and injury and discuss the validity of benefit transfers. 

In addition, since there has been significant development in information and communication tech-

nology in recent years, which has increased the rapid accumulation and easy accessibility of individual 

data, this paper also proposes a statistical framework for obtaining the estimated change in the condi-

tional probability of survival and the conditional probability of recovery by the project from individual 

data on people who encountered a disaster or accident. More specifically, some projects can affect the 

probability of a specific event causing death or injury/illness, while others can affect the conditional 

probability of survival and recovery under the event's occurrence. Thus, we focus on the latter and 

propose an appropriate approach for estimating changes in conditional survival probabilities and con-

ditional recovery probabilities using a binary response model from the individual data by adapting a 

sample selection mechanism to represent a two-step process in which it is first observed whether the 

individuals survived or not, and then whether the survivors recovered or not. This implies that the state 

of recovery can be observable only for the survivor, and we should not presume that the individual’s 

survival and recovery are uncorrelated. Here, it is implicitly assumed that there exists data on individ-

uals who faced a specific event that caused death and injury/illness and that they consist of some 

individual attributes, including the status that changes depending on the project, as well as items that 

allow us to check whether the individuals survived and recovered. As the related literature, Jaldell et 

al. (2014) analyzed the effect of EMS transport time on the probabilities of death, severe injury, and 

slight injury by estimating a logit model for each of the injuries from the emergency medical data of 

Thailand. In addition, Swan and Baumstark (2021) estimated the probabilities of death and severe 

injuries as a function of EMS transport time from French individual data related to EMS using a mul-

tinomial logit model. However, both studies ignored the two-step process that determines whether an 

individual survived and only then makes it possible to observe the degree of injury/illness, as already 

pointed out, which may lead to the so-called sample selection bias problem in terms of statistical anal-

ysis. In contrast, the binary response model with sample selection employed in this study is thus 
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characterized by explicitly describing such a process as its mechanism, thereby avoiding potential bias 

in the estimation of parameters. 

Furthermore, in this study, the event of EMS transport due to cardiopulmonary arrest is taken up 

as a specific event that causes death or injury, and Utstein-style data consisting of individuals who 

faced this event are adopted as the individual data assumed above. Thus, we derive the change in the 

conditional probabilities of survival and recovery due to the reduction in the EMS transport time from 

these data by estimating the above binary response model by considering sample selection, as already 

mentioned, and then measure the benefits of this reduction by benefit transfer. Utstein-style data are 

collected by international standards for out-of-hospital cardiopulmonary arrest patients. In Japan, for 

example, the number of out-of-hospital cardiac arrest patients has recently increased to over 100,000. 

No previous study has utilized such internationally standardized large-scale data to estimate the 

changes in the survival and recovery probabilities due to a reduction in EMS transport time and meas-

ured that benefit using the MWTP approach.  

However, some related studies have evaluated the medical or monetary benefits of reducing EMS 

transport times. For example, although Mashiko et al. (2002), Nishiuchi et al. (2008), Rea et al. (2010), 

and Gold et al. (2010) statistically analyzed the relationship between the time from patient collapse to 

ambulance arrival, CPR, and defibrillation, and the probability of survival until discharge, they dis-

cussed changes in the survival and recovery probabilities, focusing on the medical rather than the 

economic evaluation. On the other hand, Sund et al. (2012) examined the benefit of defibrillation in 

both ambulances and fire services by VSL but, unfortunately, did not consider the change in the prob-

ability of recovery or return to society. Jaldell et al. (2014) estimated the benefit of reduced transport 

time by evaluating the change in the probability of death, severe injury, and slight injury with a one-

minute reduction in EMS transport time in Thailand. However, the cost-of-illness approach was used 

in this study because there are no VSI estimates for severe and slight injuries in Thailand. In this study, 

we estimated the increase in the conditional probability of survival and the conditional probability of 

recovery by shortening the EMS transport time for patients with cardiopulmonary arrest in Japan using 

Utstein-style data, from which we measured its benefit by transfer-ring the existing VSL and VSI 

estimates.  

Thus, this study not only provides a theoretical framework for evaluating the benefits of projects 

that change the probability of death and injury but also proposes a statistical approach using individual 

data, especially Utstein-style data, to estimate the change in the probability of death and injury, which 

is essential for deriving their benefits. To the best of our knowledge, no previous study has attempted 

to use this approach. The remainder of this paper is organized as follows. Section 2 develops a theo-

retical framework that generalizes the standard models required to measure the benefits of projects 

that reduce the probability of death and injury. Section 3 presents a statistical approach incorporating 

sample selection to estimate the probabilities indicated by the theoretical model from individual data 
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containing binary variables on whether an individual facing an event that can cause death or injury/ill-

ness survives or recovers. Section 4 provides an overview of the Utstein-style data and variables in 

Japan used in this study and the results of applying the estimation method in Section 3. Section 5 

proposes a method for estimating the changes in the probabilities of death and injury based on Sections 

3 and 4, respectively, for a hypothetical project to reduce the EMS transport time in Japan and measure 

the actual benefits. Finally, Section 6 presents conclusions and future research topics.  

 

2. Theoretical framework 

The basic standard model underlying VSL and VSI assumes that individuals face the risk of either 

death or a nonfatal injury/illness. In this paper, we generalize the standard model by assuming that 

death and multiple nonfatal injuries and illnesses can occur due to multiple events. This generalized 

model provides the derivation of different VSLs and VSIs for each event that causes death or injury/ill-

ness, clarifies how a project generates the benefits by reducing the risk of death or nonfatal injury/ill-

ness, and facilitates the interpretation of benefit transfers of VSLs and VSIs to be adapted to measure 

the benefits of such a project. Furthermore, we induce an approximate expression to measure the ben-

efits of a project that changes not only the probability of an event that may cause death or injury/illness 

but also the probabilities of survival and recovery when such an event occurs.  

We consider a model in which an individual lives for only a single period. There are two categories 

of events that can occur in an individual. The first category consists of health-related events 

𝑆𝑆0, 𝑆𝑆1,⋯ , 𝑆𝑆𝐻𝐻, which are exclusive of one another. Specifically, 𝑆𝑆0 is the event that the individual dies, 

and 𝑆𝑆1,⋯ , 𝑆𝑆𝐻𝐻−1 are the events that the individual suffers the injury/illness 1,⋯ ,𝐻𝐻 − 1 respectively. 

𝑆𝑆𝐻𝐻 is an event that the individual does not die or suffer any injury/illness; that is, the individual is in 
good health. The second category consists of the hazardous events 𝑋𝑋1,⋯ ,𝑋𝑋𝐽𝐽 that can cause death and 

injury/illness medically as natural disasters or the spread of new viruses, which are mutually exclusive 
for simplicity but not so for 𝑆𝑆0, 𝑆𝑆1,⋯ , 𝑆𝑆𝐻𝐻. That is, if 𝑋𝑋𝑗𝑗 occurs, 𝑆𝑆ℎ can also occur (𝑗𝑗 = 1,⋯ , 𝐽𝐽; ℎ =

0,1,⋯ ,𝐻𝐻).  

The individual has the same income or wealth 𝑤𝑤 independent of events, but its utility is assumed 
to be event-dependent. If the product event 𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆ℎ occurs, the individual will have utility 𝑢𝑢𝑗𝑗ℎ(𝑤𝑤). On 

the other hand, if event 𝑆𝑆𝐻𝐻 occurs, the individual will have utility 𝑢𝑢𝐻𝐻(𝑤𝑤), regardless of the event that 

causes death or injury/illness. We assume that each utility is twice differentiable with respect to income 

and satisfies the following inequalities:  

𝑢𝑢𝑗𝑗0(𝑤𝑤) < 𝑢𝑢𝑗𝑗𝑗𝑗(𝑤𝑤) < 𝑢𝑢𝐻𝐻(𝑤𝑤), (1) 

0 ≤ 𝑢𝑢𝑗𝑗0′ (𝑤𝑤) < 𝑢𝑢𝑗𝑗𝑗𝑗′ (𝑤𝑤) < 𝑢𝑢𝐻𝐻′ (𝑤𝑤), (2) 

𝑢𝑢𝑗𝑗0′′ (𝑤𝑤) ≤ 0,   𝑢𝑢𝑗𝑗𝑗𝑗′′ (𝑤𝑤) ≤ 0,   𝑢𝑢𝐻𝐻′′(𝑤𝑤) ≤ 0, (3) 
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where 𝑗𝑗 = 1,⋯ , 𝐽𝐽 and 𝑘𝑘 = 1,⋯ ,𝐻𝐻 − 1.   

The basic standard model with only death and survival events assumes that the utility and marginal 

utility of income are higher at survival than at death and that the marginal utility of income at survival 

or death is weakly decreasing. Eqs. (1)–(3) are natural extensions of these assumptions. These equa-

tions indicate that the utility and marginal utility of income are higher at injury/illness than at death 

but lower at injury/illness than at survival and that the marginal utility of income at in-jury/illness is 

also weakly decreasing.  

Let 𝛼𝛼𝑗𝑗ℎ = 𝑃𝑃�𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆ℎ�  be the joint probability of the product event 𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆ℎ . Then, because the 

probability of event 𝑆𝑆𝐻𝐻 is given by ∑𝑗𝑗=1
𝐽𝐽 𝛼𝛼𝑗𝑗𝑗𝑗 = 1 −∑𝑗𝑗=1

𝐽𝐽 ∑ℎ=0𝐻𝐻−1𝛼𝛼𝑗𝑗ℎ, the expected utility function of the 

individual is 

𝐸𝐸𝐸𝐸(𝜶𝜶,𝑤𝑤) = ��𝛼𝛼𝑗𝑗ℎ𝑢𝑢𝑗𝑗ℎ(𝑤𝑤)
𝐻𝐻−1

ℎ=0

𝐽𝐽

𝑗𝑗=1

+ �1−��𝛼𝛼𝑗𝑗ℎ

𝐻𝐻−1

ℎ=0

𝐽𝐽

𝑗𝑗=1

�𝑢𝑢𝐻𝐻(𝑤𝑤), (4) 

where 𝜶𝜶 = (𝜶𝜶𝑗𝑗 ,𝜶𝜶�𝑗𝑗), 𝜶𝜶𝑗𝑗 = �𝛼𝛼𝑗𝑗0,𝛼𝛼𝑗𝑗1,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗−1�, and 𝜶𝜶�𝑗𝑗 = (𝜶𝜶0,⋯ ,𝜶𝜶𝑗𝑗−1,𝜶𝜶𝑗𝑗+1,⋯ ,𝜶𝜶𝐽𝐽). 

Suppose that the individual is offered a change in the joint probability of the product event 𝑋𝑋𝑗𝑗 ∩

𝑆𝑆0 , i.e., the probability of death when the event 𝑋𝑋𝑗𝑗 occurs, from 𝛼𝛼𝑗𝑗00  to 𝛼𝛼𝑗𝑗0. Subsequently, the com-

pensating variation for this change, CV𝑗𝑗0, satisfies 

𝐸𝐸𝐸𝐸�𝛼𝛼𝑗𝑗00 ,𝛼𝛼𝑗𝑗10 ,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗−10 ,𝜶𝜶�𝑗𝑗0,𝑤𝑤0� = 𝐸𝐸𝐸𝐸�𝛼𝛼𝑗𝑗0,𝛼𝛼𝑗𝑗10 ,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗−10 ,𝜶𝜶�𝑗𝑗0,𝑤𝑤0 − CV𝑗𝑗0�, (5) 

where 𝜶𝜶�𝑗𝑗0 = (𝜶𝜶00,⋯ ,𝜶𝜶𝑗𝑗−10 ,𝜶𝜶𝑗𝑗+10 ,⋯ ,𝜶𝜶𝐽𝐽0). VSL is commonly defined as the MWTP for the probability 

of death; thus, we define the VSL when the event 𝑋𝑋𝑗𝑗 occurs as follows: 

VSL𝑗𝑗(𝜶𝜶0,𝑤𝑤0) ≡ −
𝑑𝑑CV𝑗𝑗0
𝑑𝑑𝛼𝛼𝑗𝑗0

�
𝛼𝛼𝑗𝑗0=𝛼𝛼𝑗𝑗0

0
=
𝑢𝑢𝐻𝐻(𝑤𝑤0)− 𝑢𝑢𝑗𝑗0(𝑤𝑤0)

𝜆𝜆(𝜶𝜶0,𝑤𝑤0) , (6) 

where 

𝜆𝜆(𝜶𝜶0,𝑤𝑤0) = ��𝛼𝛼𝑗𝑗ℎ𝑢𝑢𝑗𝑗ℎ′ (𝑤𝑤0)
𝐻𝐻−1

ℎ=0

𝐽𝐽

𝑗𝑗=1

+ �1−��𝛼𝛼𝑗𝑗ℎ

𝐻𝐻−1

ℎ=0

𝐽𝐽

𝑗𝑗=1

�𝑢𝑢𝐻𝐻′ (𝑤𝑤0) > 0. (7) 

Similarly, suppose that the individual is offered a change in the joint probability of the product 

event 𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆𝑘𝑘 , i.e., the probability of injury/illness 𝑘𝑘 when the event 𝑋𝑋𝑗𝑗 occurs, from 𝛼𝛼𝑗𝑗𝑗𝑗0  to 𝛼𝛼𝑗𝑗𝑗𝑗 (𝑘𝑘 =

1,⋯ ,𝐻𝐻 − 1). The compensating variation for this change, CV𝑗𝑗𝑗𝑗, satisfies 

𝐸𝐸𝐸𝐸�𝛼𝛼𝑗𝑗00 ,𝛼𝛼𝑗𝑗10 ,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗0 ,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗−10 ,𝜶𝜶�𝑗𝑗0,𝑤𝑤0�                                                         
= 𝐸𝐸𝐸𝐸�𝛼𝛼𝑗𝑗00 ,𝛼𝛼𝑗𝑗10 ,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗−10 ,𝛼𝛼𝑗𝑗𝑗𝑗,𝛼𝛼𝑗𝑗𝑗𝑗+10 ,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗−10 ,𝜶𝜶�𝑗𝑗0,𝑤𝑤0 − CV𝑗𝑗𝑗𝑗�. (8)

 

In the same manner as VSL, we define the VSI of injury/illness 𝑘𝑘 when event 𝑋𝑋𝑗𝑗 occurs as 
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VSI𝑗𝑗𝑗𝑗(𝜶𝜶0,𝑤𝑤0) ≡ −
𝑑𝑑CV𝑗𝑗𝑗𝑗
𝑑𝑑𝛼𝛼𝑗𝑗𝑗𝑗

�
𝛼𝛼𝑗𝑗𝑗𝑗=𝛼𝛼𝑗𝑗𝑗𝑗

0
=
𝑢𝑢𝐻𝐻(𝑤𝑤0)− 𝑢𝑢𝑗𝑗𝑗𝑗(𝑤𝑤0)

𝜆𝜆(𝜶𝜶0,𝑤𝑤0) . (9) 

According to the concept of conditional probability, we describe the process of changes in the 

probability of death and injury/illness due to project implementation. First, let the probability of event 
𝑋𝑋𝑗𝑗 be represented as 𝑝𝑝𝑗𝑗 = 𝑃𝑃(𝑋𝑋𝑗𝑗), the conditional probability of 𝑆𝑆0𝑐𝑐 with the condition that event 𝑋𝑋𝑗𝑗 

occurs as 𝑠𝑠𝑗𝑗 = 𝑃𝑃�𝑆𝑆0𝑐𝑐|𝑋𝑋𝑗𝑗�, and the conditional probability of event 𝑆𝑆𝑘𝑘𝑐𝑐 with the condition that the prod-

uct event 𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆0𝑐𝑐 occurs as 𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑃𝑃�𝑆𝑆𝑘𝑘𝑐𝑐|𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆0𝑐𝑐� (𝑘𝑘 = 1,⋯ ,𝐻𝐻 − 1). These are referred to as the haz-

ard probability, conditional probability of survival, and conditional probability of recovering from the 

injury/illness 𝑘𝑘 in this study. Using these expressions, the probability of death and the probability of 
injury/illness when event 𝑋𝑋𝑗𝑗 occurs can be expressed as 

𝛼𝛼𝑗𝑗0 = 𝑃𝑃�𝑋𝑋𝑗𝑗�𝑃𝑃�𝑆𝑆0|𝑋𝑋𝑗𝑗� = 𝑝𝑝𝑗𝑗�1− 𝑠𝑠𝑗𝑗�, (10) 

𝛼𝛼𝑗𝑗𝑗𝑗 = 𝑃𝑃�𝑋𝑋𝑗𝑗�𝑃𝑃�𝑆𝑆0𝑐𝑐|𝑋𝑋𝑗𝑗�𝑃𝑃�𝑆𝑆𝑘𝑘|𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆0𝑐𝑐� = 𝑝𝑝𝑗𝑗𝑠𝑠𝑗𝑗�1− 𝑟𝑟𝑗𝑗𝑗𝑗�. (11) 

If 𝑠𝑠𝑗𝑗 = 1, that is, the individual always survives when facing event 𝑋𝑋𝑗𝑗, then 𝛼𝛼𝑗𝑗0 = 0 and our model 

coinsides with a standard model with only injury/illness risk. On the other hand, if 𝑟𝑟𝑗𝑗1 = ⋯ = 𝑟𝑟𝑗𝑗𝑗𝑗−1 =

1, i.e., the individual always recovers from or does not suffer all the injuries and illnesses when sur-
viving event 𝑋𝑋𝑗𝑗, then 𝛼𝛼𝑗𝑗𝑗𝑗 = 0 and our model coincides with a standard model with only mortality risk. 

Consider a change in probability from (𝑝𝑝𝑗𝑗0, 𝑠𝑠𝑗𝑗0, 𝑟𝑟𝑗𝑗0) to (𝑝𝑝𝑗𝑗1, 𝑠𝑠𝑗𝑗1, 𝑟𝑟𝑗𝑗1). Denoting the differences in each 

probability by ∆𝑝𝑝𝑗𝑗 = −(𝑝𝑝𝑗𝑗1 − 𝑝𝑝𝑗𝑗0) , ∆𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗1 − 𝑠𝑠𝑗𝑗0 , and ∆𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑟𝑟𝑗𝑗𝑗𝑗1 − 𝑟𝑟𝑗𝑗𝑗𝑗0  , the compensating variation 

CV(𝜹𝜹𝑗𝑗), is defined as 

𝐸𝐸𝐸𝐸�𝜶𝜶𝑗𝑗0,𝜶𝜶�𝑗𝑗0,𝑤𝑤� = 𝐸𝐸𝐸𝐸�𝜶𝜶𝑗𝑗1,𝜶𝜶�𝑗𝑗0,𝑤𝑤 − CV(𝜹𝜹𝑗𝑗)�, (12) 

where 𝜹𝜹𝑗𝑗 = �∆𝑝𝑝𝑗𝑗 ,∆𝑠𝑠𝑗𝑗 ,∆𝑟𝑟𝑗𝑗1,⋯ ,∆𝑟𝑟𝑗𝑗𝑗𝑗−1�
′, 

𝛼𝛼𝑗𝑗01 = �𝑝𝑝𝑗𝑗0 − ∆𝑝𝑝𝑗𝑗��1− 𝑠𝑠𝑗𝑗0 − ∆𝑠𝑠𝑗𝑗�, (13) 

𝛼𝛼𝑗𝑗𝑗𝑗1 = �𝑝𝑝𝑗𝑗0 − ∆𝑝𝑝𝑗𝑗��𝑠𝑠𝑗𝑗0 + ∆𝑠𝑠𝑗𝑗��1− 𝑟𝑟𝑗𝑗𝑗𝑗0 − ∆𝑟𝑟𝑗𝑗𝑗𝑗�,  𝑘𝑘 = 1,⋯ ,𝐻𝐻 − 1, (14) 

𝜶𝜶𝑗𝑗0 = (𝛼𝛼𝑗𝑗00 ,𝛼𝛼𝑗𝑗10 ,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗−10 ) , and 𝜶𝜶𝑗𝑗1 = (𝛼𝛼𝑗𝑗01 ,𝛼𝛼𝑗𝑗11 ,⋯ ,𝛼𝛼𝑗𝑗𝑗𝑗−11 ) . In addition, if and only if 𝜹𝜹𝑗𝑗 = 𝟎𝟎 , then 

𝛼𝛼𝑗𝑗01 = 𝛼𝛼𝑗𝑗00   and 𝛼𝛼𝑗𝑗𝑗𝑗1 = 𝛼𝛼𝑗𝑗𝑗𝑗0  hold for all 𝑘𝑘. 

The compensating variation based on the expected utility in Eq. (12) is often called the option price. 

Other welfare measures in the presence of risk include the expected surplus, defined as the expected 

value of the compensating variation in each state, and the option value, defined as the option price 

minus the expected surplus. For example, Graham (1981) presented a theoretical relationship between 

option prices, expected surplus, and option values, which was also introduced by Boardman et al. 

(2014). However, because we assume that the public project only affects the probability of death or 
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injury/illness and does not affect the state-by-state utility, the expected surplus is zero, and the op-tion 

value is equal to the option price.  
Lett 𝑏𝑏𝑗𝑗 be the first-order approximation value of the compensating variation, defined in Eq. (12) 

with 𝜹𝜹𝑗𝑗 = 𝟎𝟎, which explicitly includes VSL and VSI and depends on death and types of injuries/ill-

nesses, as well as the event that causes them, we then have 

𝑏𝑏𝑗𝑗 = 𝜔𝜔𝑗𝑗
𝑝𝑝∆𝑝𝑝𝑗𝑗 + 𝜔𝜔𝑗𝑗𝑠𝑠𝑝𝑝𝑗𝑗0∆𝑠𝑠𝑗𝑗 + �𝜔𝜔𝑗𝑗𝑗𝑗𝑟𝑟 𝑝𝑝𝑗𝑗0𝑠𝑠𝑗𝑗0∆𝑟𝑟𝑗𝑗𝑗𝑗

𝐻𝐻−1

𝑘𝑘=1

, (15) 

where 

𝜔𝜔𝑗𝑗
𝑝𝑝 = �1− 𝑠𝑠𝑗𝑗0�VSL𝑗𝑗 + �𝑠𝑠𝑗𝑗0�1− 𝑟𝑟𝑗𝑗𝑗𝑗0 �VSI𝑗𝑗𝑗𝑗

𝐻𝐻−1

𝑘𝑘=1

, (16) 

𝜔𝜔𝑗𝑗𝑠𝑠 = VSL𝑗𝑗 − ��1− 𝑟𝑟𝑗𝑗𝑗𝑗0 �VSI𝑗𝑗𝑗𝑗

𝐻𝐻−1

𝑘𝑘=1

, (17) 

𝜔𝜔𝑗𝑗𝑗𝑗𝑟𝑟 = VSI𝑗𝑗𝑗𝑗, 𝑘𝑘 = 1,⋯ ,𝐻𝐻 − 1. (18) 

Eq. (15) expresses the private or per capita benefits of a project or policy. By using 𝑁𝑁� to denote the 
number of people potentially enjoying the project or policy and defining ∆𝑁𝑁𝑗𝑗

𝑝𝑝 ≡ 𝑁𝑁�∆𝑝𝑝𝑗𝑗 , ∆𝑁𝑁𝑗𝑗𝑠𝑠 ≡

𝑁𝑁�𝑝𝑝𝑗𝑗0∆𝑠𝑠𝑗𝑗 and ∆𝑁𝑁𝑗𝑗𝑟𝑟 ≡ 𝑁𝑁�𝑝𝑝𝑗𝑗0𝑠𝑠𝑗𝑗0∆𝑟𝑟𝑗𝑗𝑗𝑗, the total benefit 𝐵𝐵𝑗𝑗 is represented as follows: 

𝐵𝐵𝑗𝑗 ≡ 𝑁𝑁�𝑏𝑏𝑗𝑗 = 𝜔𝜔𝑗𝑗
𝑝𝑝∆𝑁𝑁𝑗𝑗

𝑝𝑝 + 𝜔𝜔𝑗𝑗𝑠𝑠∆𝑁𝑁𝑗𝑗𝑠𝑠 + �𝜔𝜔𝑗𝑗𝑗𝑗𝑟𝑟 ∆𝑁𝑁𝑗𝑗𝑗𝑗𝑟𝑟
𝐻𝐻−1

𝑘𝑘=1

, (19) 

where ∆𝑁𝑁𝑗𝑗
𝑝𝑝 is a decrease in the number of individuals facing event 𝑋𝑋𝑗𝑗, ∆𝑁𝑁𝑗𝑗𝑠𝑠 is an increase  in the num-

ber of individuals facing event 𝑋𝑋𝑗𝑗 and surviving event 𝑋𝑋𝑗𝑗, and  ∆𝑁𝑁𝑗𝑗𝑘𝑘𝑟𝑟  is an increase in the number of 

individuals facing event 𝑋𝑋𝑗𝑗 and recovering from the injury/illness 𝑘𝑘. Eqs. (16)–(18) can be regarded 

as the values for the unit benefits associated with those changes. First, 𝜔𝜔𝑗𝑗
𝑝𝑝 denotes the benefits from 

one less individual facing event, 𝑋𝑋𝑗𝑗. If an individual was to face that event, the individual would not 

survive with probability 1 − 𝑠𝑠𝑗𝑗0. Furthermore, if an individual was to survive that event with probabil-

ity 𝑠𝑠𝑗𝑗0, the individual would suffer injury/illness 𝑘𝑘 with probability 1 − 𝑟𝑟𝑗𝑗𝑘𝑘0 . That is, when an individual 

encounters event 𝑋𝑋𝑗𝑗, the individual may die, or the individual may survive event 𝑋𝑋𝑗𝑗 and still suffer 

injuries or illnesses. One less individual facing event 𝑋𝑋𝑗𝑗 generates benefits �1− 𝑠𝑠𝑗𝑗0�VSL𝑗𝑗 from the for-

mer risk reduction and benefits 𝑠𝑠𝑗𝑗0�1− 𝑟𝑟𝑗𝑗𝑗𝑗0 �VSI𝑗𝑗𝑗𝑗 from the latter risk reduction. Consequently, the unit 

benefit of the one less individual facing event 𝑋𝑋𝑗𝑗 depends on both VSL and VSI and is given by Eq. 

(16). Second, 𝜔𝜔𝑗𝑗𝑠𝑠 represents the benefit from one more individual surviving event 𝑋𝑋𝑗𝑗. If one more in-

dividual survives on the condition that event 𝑋𝑋𝑗𝑗 occurs, the conditional benefits increase by VSL𝑗𝑗 but 

decrease by �1 − 𝑟𝑟𝑗𝑗𝑗𝑗0 �VSI𝑗𝑗𝑗𝑗 because the individual is at risk of injury/illness after survival. Finally, 

𝜔𝜔𝑗𝑗𝑗𝑗𝑟𝑟  is the benefit from one more individual recovering from the injury/illness 𝑘𝑘 on the condition that 

the individual faces event 𝑋𝑋𝑗𝑗 and survives. The conditional benefits are equal to VSI𝑗𝑗𝑗𝑗. 

In the subsequent sections, we assume that individual data are available for individuals facing an 
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event 𝑋𝑋𝑗𝑗 with a given hazard probability and that ∆𝑝𝑝𝑗𝑗 = 0, i.e., the project or policy does not affect 

the hazard probability. In addition, we consider the case where 𝐻𝐻 = 2 and 𝑆𝑆1 is the event in which the 

individual suffers from severe disability. Subsequently, the approximate value of the total benefit is 

𝐵𝐵𝑗𝑗 = 𝜔𝜔𝑗𝑗𝑠𝑠∆𝑁𝑁𝑗𝑗𝑠𝑠 + 𝜔𝜔𝑗𝑗1𝑟𝑟 ∆𝑁𝑁𝑗𝑗1𝑟𝑟 . (20) 

To set 𝜔𝜔𝑗𝑗𝑠𝑠 and 𝜔𝜔𝑗𝑗𝑟𝑟 in the measurement of this benefit, it is necessary to obtain the estimates of VSL𝑗𝑗 

and VSI𝑗𝑗1. If these are not available, it is possible to adopt a benefit transfer from VSL𝑙𝑙 and VSI𝑙𝑙1 cor-

responding to event 𝑋𝑋𝑙𝑙 different from event 𝑋𝑋𝑗𝑗. However, it should be noted that from Eqs. (6) and (9), 

such a transfer is valid if and only if 𝑢𝑢𝑗𝑗0(𝑤𝑤0) = 𝑢𝑢𝑙𝑙0(𝑤𝑤0) and 𝑢𝑢𝑗𝑗1(𝑤𝑤0) = 𝑢𝑢𝑙𝑙1(𝑤𝑤0) hold; that is, the 

utility of death and the utility of severe disability are the same regardless of events 𝑋𝑋𝑗𝑗 and 𝑋𝑋𝑙𝑙, because 

we deduce that 

VSL𝑗𝑗(𝜶𝜶0,𝑤𝑤0)
VSL𝑙𝑙(𝜶𝜶0,𝑤𝑤0) =

𝑢𝑢𝐻𝐻(𝑤𝑤0)− 𝑢𝑢𝑗𝑗0(𝑤𝑤0)
𝑢𝑢𝐻𝐻(𝑤𝑤0)− 𝑢𝑢𝑙𝑙0(𝑤𝑤0) , (21) 

VSI𝑗𝑗1(𝜶𝜶0,𝑤𝑤0)
VSI𝑙𝑙1(𝜶𝜶0,𝑤𝑤0) =

𝑢𝑢𝐻𝐻(𝑤𝑤0)− 𝑢𝑢𝑗𝑗1(𝑤𝑤0)
𝑢𝑢𝐻𝐻(𝑤𝑤0)− 𝑢𝑢𝑙𝑙1(𝑤𝑤0) . (22) 

Carthy et al. (1999) obtained a similar expression for estimating VSL using the contingent valuation 

method and the standard gamble method in a different context. Eqs. (21) and (22) imply that the event 
that causes greater utility loss results in greater VSL or VSI. Furthermore, to set ∆𝑁𝑁𝑗𝑗𝑠𝑠 and ∆𝑁𝑁𝑗𝑗𝑟𝑟 in Eq. 

(20), both 𝑠𝑠𝑗𝑗0, 𝑟𝑟𝑗𝑗10  and 𝑠𝑠𝑗𝑗1, 𝑟𝑟𝑗𝑗11  should also be estimated using the available individual data, so that the 

statistical analysis required for this purpose is described later, although it is implicitly assumed that 

𝑝𝑝𝑗𝑗0 can be replaced by the empirical probability of facing event 𝑋𝑋𝑗𝑗. 

 

3. A binary response model with sample selection 

Suppose that we have a large amount of individual data to determine whether an individual facing 
an event with a known probability of occurrence 𝑋𝑋𝑗𝑗 survives or recovers, that is, rehabilitated, within 

a certain period. Since rehabilitation presupposes survival, these individual data have the property that 

survival and rehabilitation are not considered to be uncorrelated. Furthermore, because the state of 

rehabilitation is not formally observed for deceased individuals, the data for that part of the population 

can be missing. This study estimated a binary response model with survival and rehabilitation as binary 

response variables from individual data with these characteristics, whereby we predicted changes in 

the probability of survival and rehabilitation due to projects and policies.  

In a case where there is a correlation between survival and rehabilitation, it is not plausible to take 

a simple approach, such as estimating whether the patient survived from the full sample, then estimat-

ing whether the patient returned to society from only the survival samples using a standard binary 
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response model individually. If such a procedure is adopted without ensuring non-correlation, sample 

selection bias arises (Heckman, 1979), which incurs inconsistency in the estimators of parameters, and 

thus, the results of the analysis lose their reliability. To avoid this problem, it is necessary to incorporate 

a selection mechanism into the binary response model. In the following, we construct a sample selec-

tion model whose structure is also described by a binary response model.  

First, the binary response variable that represents whether individual 𝑖𝑖 survived after facing event 
𝑋𝑋𝑗𝑗, is expressed as 𝑧𝑧𝑖𝑖. If event 𝑆𝑆0 occurs in individual 𝑖𝑖 who faced event 𝑋𝑋𝑗𝑗 (i.e., if the individual 𝑖𝑖 

who faced event 𝑋𝑋𝑗𝑗 died), then 𝑧𝑧𝑖𝑖 = 0, and when event 𝑆𝑆0𝑐𝑐 occurs in individual 𝑖𝑖 who faced event 𝑋𝑋𝑗𝑗 

(i.e., if the individual facing event 𝑋𝑋𝑗𝑗 survived), then 𝑧𝑧𝑖𝑖 = 1. Meanwhile, the binary response variable 

that indicates whether individual 𝑖𝑖 facing event 𝑋𝑋𝑗𝑗 was rehabilitated is represented as 𝑦𝑦𝑖𝑖. If event 𝑆𝑆1 

occurs in individual 𝑖𝑖 who survived event 𝑋𝑋𝑗𝑗 (i.e., the individual 𝑖𝑖 who faced event 𝑋𝑋𝑗𝑗 is severely dis-

abled), then 𝑦𝑦𝑖𝑖 = 0, and if event 𝑆𝑆1𝑐𝑐 occurs in individual 𝑖𝑖 in the face of event 𝑋𝑋𝑗𝑗  (i.e., when the indi-

vidual 𝑖𝑖 who survived in the face of event 𝑖𝑖 returns to society), then 𝑦𝑦𝑖𝑖 = 1. However, 𝑦𝑦𝑖𝑖 is observed 

only when 𝑧𝑧𝑖𝑖 = 1 and not when 𝑧𝑧𝑖𝑖 = 0, so it is possible to consider that the 𝑦𝑦𝑖𝑖 data when 𝑧𝑧𝑖𝑖 = 0 are 

missing. 

Based on the above, we formulated a binary response model in this study. If 𝑦𝑦𝑖𝑖∗ and 𝑧𝑧𝑖𝑖∗ are the latent 

continuous variables of 𝑦𝑦𝑖𝑖 and 𝑧𝑧𝑖𝑖, respectively, and assuming that both are linearly specified, they are 

expressed as: 

𝑦𝑦𝑖𝑖∗ = 𝐱𝐱𝑖𝑖′𝜷𝜷+ 𝑢𝑢𝑖𝑖 , 𝑦𝑦𝑖𝑖 = 𝐼𝐼(𝑦𝑦𝑖𝑖∗ > 0)𝑧𝑧𝑖𝑖 , (23) 

 𝑧𝑧𝑖𝑖∗ = 𝐰𝐰𝑖𝑖
′𝜸𝜸 + 𝑣𝑣𝑖𝑖 , 𝑧𝑧𝑖𝑖 = 𝐼𝐼(𝑧𝑧𝑖𝑖∗ > 0), (24) 

�
𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖�~𝑁𝑁 ��00� , �1 𝜌𝜌

𝜌𝜌 1�� , (25) 

where 𝐱𝐱𝑖𝑖 and 𝐰𝐰𝑖𝑖 are the covariate vectors of 𝑦𝑦𝑖𝑖∗ and 𝑧𝑧𝑖𝑖∗, respectively, and 𝜷𝜷 and 𝜸𝜸 are the coefficient 

vectors of 𝐱𝐱𝑖𝑖 and 𝐰𝐰𝑖𝑖. 𝐼𝐼(∙) denotes the indicator function, which is 1 if the parentheses are true and 0 

otherwise. The error term vector (𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖)′ is assumed to be independent of (𝐱𝐱𝑖𝑖′ ,𝐰𝐰𝑖𝑖
′)′ and follows a bi-

variate normal distribution with zero means, unit variances, and correlation coefficient 𝜌𝜌. In such mod-

eling, if 𝜌𝜌 = 0, implying that 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 are independent of each other, there is no sample-selection 

bias. It would also be possible to use a semi-nonparametric distribution that relaxes the normal distri-

bution condition in Eq. (25) and does not assume a specific distribution in the above framework (see 

Gallant & Nychka, 1987; Melenberg & von Soest, 1996; Stewart, 2005). However, from the perspec-

tive of the statistical properties of the estimator and ease of handling in the predictor, that is, the pre-

dicted probability described later, we will only mention and not pursue it in this paper. 
Next, since 𝑦𝑦𝑖𝑖 represents the outcome of whether individual 𝑖𝑖 who survived facing event 𝑋𝑋𝑗𝑗 even-

tually rejoined society, Eq. (23) is called the outcome equation. Meanwhile, Eq. (24) is called a 
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selection equation because it describes the selection process of whether the survival of individual 𝑖𝑖 
who faced event 𝑋𝑋𝑗𝑗 is realized, which is a precondition for return to society. Considering the charac-

teristics of objective individual data, a binary response model incorporating sample selection can be 

constructed and expressed as a bivariate probit model from Eq. (25). Although our modeling is, there-

fore, a two-equation system of binary response models, it has a useful property in numerical calcula-

tions that the conditional probability required for the likelihood function is relatively simplified, as 

will be clarified later. This point also plays an essential role in estimating the changes in the probabil-

ities of rehabilitation and survival based on the above model, which is key to the theoretical framework 

described in the previous section.  

From Eqs. (23)–(25), the probability of each event for individual 𝑖𝑖 is derived as follows: 

𝜋𝜋11𝑖𝑖(𝛉𝛉) = P(𝑦𝑦𝑖𝑖 = 1, 𝑧𝑧𝑖𝑖 = 1|𝐱𝐱𝑖𝑖 ,𝐰𝐰𝑖𝑖;𝛉𝛉) = Φ2(𝐱𝐱𝑖𝑖′𝜷𝜷,𝐰𝐰𝑖𝑖
′𝜸𝜸;𝜌𝜌), (26) 

𝜋𝜋10𝑖𝑖(𝛉𝛉) = P(𝑦𝑦𝑖𝑖 = 1, 𝑧𝑧𝑖𝑖 = 0|𝐱𝐱𝑖𝑖 ,𝐰𝐰𝑖𝑖;𝛉𝛉) = Φ2(𝐱𝐱𝑖𝑖′𝜷𝜷,−𝐰𝐰𝑖𝑖
′𝜸𝜸;−𝜌𝜌), (27) 

𝜋𝜋01𝑖𝑖(𝛉𝛉) = P(𝑦𝑦𝑖𝑖 = 0, 𝑧𝑧𝑖𝑖 = 1|𝐱𝐱𝑖𝑖 ,𝐰𝐰𝑖𝑖;𝛉𝛉) = Φ2(−𝐱𝐱𝑖𝑖′𝜷𝜷,𝐰𝐰𝑖𝑖
′𝜸𝜸;−𝜌𝜌), (28) 

𝜋𝜋00𝑖𝑖(𝛉𝛉) = P(𝑦𝑦𝑖𝑖 = 0, 𝑧𝑧𝑖𝑖 = 0|𝐱𝐱𝑖𝑖 ,𝐰𝐰𝑖𝑖;𝛉𝛉) = Φ2(−𝐱𝐱𝑖𝑖′𝜷𝜷,−𝐰𝐰𝑖𝑖
′𝜸𝜸;𝜌𝜌), (29) 

where Φ2(∙) represents the cumulative distribution function (cdf) of the bivariate standard normal dis-

tribution, and 𝛉𝛉 = (𝜷𝜷′,𝜸𝜸′,𝜌𝜌)′ is the unknown parameter vector. Based on Eqs. (26)–(29), the log-like-

lihood function is 

ln𝐿𝐿(𝛉𝛉) = � ln{𝜋𝜋10𝑖𝑖(𝛉𝛉) + 𝜋𝜋00𝑖𝑖(𝛉𝛉)}
𝑧𝑧𝑖𝑖=0

+ � � ln 𝜋𝜋01𝑖𝑖(𝛉𝛉)
𝑦𝑦𝑖𝑖=0𝑧𝑧𝑖𝑖=1

+ � � ln 𝜋𝜋11𝑖𝑖(𝛉𝛉)
𝑦𝑦𝑖𝑖=1𝑧𝑧𝑖𝑖=1

. (30) 

Given that Φ(∙) is the cdf of the univariate standard normal distribution, it is easily seen that the rela-

tion 𝜋𝜋10𝑖𝑖(𝛉𝛉) + 𝜋𝜋00𝑖𝑖(𝛉𝛉) = Φ(−𝐰𝐰𝑖𝑖
′𝜸𝜸) holds. Hence, by maximizing Eq. (30), we derive the maximum 

likelihood estimator of 𝛉𝛉; i.e., 𝛉𝛉� = arg max ln𝐿𝐿(𝛉𝛉). Then, using estimator 𝛉𝛉�, we can obtain the pre-

dictor (predicted probability) of Eqs. (26)–(29), which makes it possible to estimate the change in the 

probabilities of rehabilitation and survival from individual data. Further details about this will be dis-

cussed in Section 5.  

However, because the system consisting of Eqs. (23)–(25) is nonlinear, the parameters can be iden-

tified even if appropriate so-called exclusion restrictions are not imposed; however, it is known that 

parameter estimates can be unstable and unreliable. As discussed in Wooldridge (2010), for example, 

it would thus be recommended that at least one variable in 𝐰𝐰𝑖𝑖 should be excluded from 𝐱𝐱𝑖𝑖. In addition, 

regarding further extensibility, it should be noted that the modeling was limited to two survival states. 

However, it can easily be generalized to an ordered response model applicable to the possible existence 
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of multiple states, where the outcome equation is assumed to have an ordinal form. For example, since 

Eqs. (23) and (24) are reduced to a bivariate probit model, even as an ordered response-dependent 

variable, the likelihood function, as in Eq. (30), can be constructed from the probabilities correspond-

ing to Eqs. (26)–(29) in the present context, using a similar procedure.  

 

4. Estimation using Utstein style data 

With this framework, this study considers event 𝑋𝑋𝑗𝑗, in which an individual with an out-of-hospital 

cardiopulmonary arrest is transported by ambulance. Individuals who experience this event face the 

risk of death or severe disability; therefore, Utstein-style data were used in the estimation of the binary 

response model in the previous section.  

 

4.1 Data Description 

The Utstein-style data are a collection of individual data on out-of-hospital cardiopulmonary arrest 

patients transported to the hospital by EMS based on international standards, which have been col-

lected nationwide in Japan since 2004 by the Fire and Disaster Management Agency of the Ministry 

of Internal Affairs and Communications. These data can be divided into the following major catego-

ries: “Witness of cardiac arrest,” “Bystander CPR,” “Initial cardiac rhythm,” “Details of emergency 

life-saving treatment,” “Time interval,” “Presumed causes of cardiac arrest,” and “Outcome and prog-

nosis.” “Outcome and prognosis” is based on the Glasgow-Pittsburgh Cerebral and Overall Perfor-

mance Categories, which are internationally used to evaluate the quality of life of patients with cardi-

opulmonary arrest. After one month, the patients’ cerebral performance categories (CPC) and overall 

performance categories (OPC) were classified as good performance, moderate disability, severe disa-

bility, coma, and death or brain death. The Fire and Disaster Management Agency of the Ministry of 

Internal Affairs and Communications (2013) deems survival if the CPC and OPC after one month are 

good performance, moderate disability, severe disability, or coma, and rehabilitation if those after one 

month are either good performance or moderate disability. Therefore, in this paper, the period assumed 

in the theoretical model is one month, and if an individual is alive according to the above definition, 

we consider that a conditional event �𝑆𝑆0𝑐𝑐|𝑋𝑋𝑗𝑗� has occurred to them, and if the individual corresponds 

to rehabilitation, we consider that the conditional event �𝑆𝑆1𝑐𝑐|𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆0𝑐𝑐� has occurred.  

Figure 1 shows the flow of the extraction process of the Utstein-style data, and we used data from 

2012 in this study. The number of patients who were transported by ambulance due to out-of-hospital 
cardiopulmonary arrest, that is, the number of patients who experienced the event 𝑋𝑋𝑗𝑗, was 121,392 out 

of 126 million people in Japan. Of these, 6,210 were survivors, that is, they experienced the conditional 

event �𝑆𝑆0𝑐𝑐|𝑋𝑋𝑗𝑗�. Moreover, 3,377 patients among the survivors returned to society, that is, they the ex-

perienced the event �𝑆𝑆1𝑐𝑐|𝑋𝑋𝑗𝑗 ∩ 𝑆𝑆0𝑐𝑐�. The 115,182 patients who did not survive were treated as having 

missing data on their rehabilitation status. Table 1 shows the description and summary statistics for 
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Figure 1: Flow diagram of data extraction process for analysis 

 

 

variables generated from the Utstein-style data for analysis, the full sample, and the sample that sur-

vived for one month. First, 1MS and SR are the dependent variables in the binary response model. 

1MS is a dummy variable for whether the patient survived for one month, and it corresponds to 𝑧𝑧𝑖𝑖. SR 

is a dummy variable for whether the one-month survivor returned to society and corresponds to 𝑦𝑦𝑖𝑖. In 

the following, we explain covariates 𝐱𝐱𝑖𝑖 and 𝐰𝐰𝑖𝑖 of the binary response model. 

ETT1 and ETT2 are data related to the time intervals of the EMS transport. ETT1 is the time 

interval from ambulance call to arrival at the patient’s side; the shorter the ETT1, the quicker the 

medical treatment started. In this study, we include ETT1 as a covariate 𝐱𝐱𝑖𝑖 in the outcome equation, 

based on the hypothesis that early initiation of medical treatment facilitates patient rehabilitation. On 

the other hand, the covariate 𝐰𝐰𝑖𝑖 in the selection equation is not ETT1 but ETT2, which represents the 

time interval from ambulance call to hospital arrival. This implies that the hypothesis is that early 

hospital admission promotes patient survival. However, because ETT2 is the time interval between 

ambulance call and hospital arrival added to ETT1, if this hypothesis is correct, the early start of med-

ical treatment will also promote patient survival. In addition to the means and standard deviations in 

Table 1, the medians of ETT1 and ETT2 are 8 and 30 min, respectively, while the maximum values 

Population of Japan (2012): about 126 million 

 

Out-of-hospital cardiopulmonary arrest patients transported by ambulance (excluding outliers): 121,392 

 

Survivors (CPC/OPC is 1 (good performance) to 4 
(coma)): 6,210 

Patients who returned to society (CPC/OPC 
both 1 (good performance) or 2 (moderate 
disability)): 3,377 

Patients who did not return to society (CPC 
or OPC is 3 (severe disability) or 4 (coma)): 
2,833 

Patients who did not survive do not return t
o society (CPC/OPC of 5 (death or brain de
ath)): 115,182 
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Table 1 Variable descriptions and summary statistics 

Variable Description 
 Full sample  Survival sample 

 Mean SD  Mean SD 

1MS Dummy for 1-month survival after cardiac arrest  0.051 0.220  –– –– 

SR Dummy for social rehabilitation among 1-month survivors  –– ––  0.544 0.498 

ETT 1 Time interval from ambulance call to patient’s side arrival (min)  9.210 7.123  8.150 3.641 

ETT 2 Time interval from ambulance call to hospital arrival (min)  34.27 17.35  34.20 18.17 

Witness Dummy for witnessed arrest by bystanders or EMS personnel  0.407 0.491  0.796 0.403 

Sex Dummy for male  0.432 0.495  0.334 0.472 

Young Dummy for age 18 years or younger  0.014 0.116  0.037 0.190 

Old  Dummy for age 81 years or older  0.440 0.496  0.242 0.429 

ELST Dummy for emergency life-saving technicians in ambulance  0.976 0.152  0.980 0.139 

Doctor Dummy for medical doctors in ambulance  0.029 0.169  0.068 0.252 

ACLS Dummy for advanced cardiac life support by a medical doctor  0.075 0.263  0.100 0.300 

CC Dummy for chest compressions by a bystander  0.441 0.496  0.467 0.499 

RB Dummy for rescue breathing by a bystander  0.080 0.271  0.112 0.315 

AED Dummy for the use of an AED by a bystander  0.013 0.113  0.057 0.231 

VF/VT 
Dummy for ventricular fibrillation or pulseless ventricular tach-
ycardia as initial cardiac rhythm 

 0.066 0.248  0.348 0.476 

PEA Dummy for pulseless electrical activity as initial cardiac rhythm  0.209 0.406  0.275 0.446 

Asystole Dummy for asystole as initial cardiac rhythm  0.682 0.466  0.139 0.346 

DFEP Dummy for defibrillation by EMS personnel  0.096 0.294  0.391 0.488 

CO Dummy for presumed cardiac origin   0.139 0.346  0.337 0.473 

CVD Dummy for cerebrovascular diseases  0.036 0.187  0.037 0.190 

RD  Dummy for respiratory diseases  0.062 0.240  0.075 0.263 

MT Dummy for malignant tumors  0.035 0.184  0.004 0.066 

EXC Dummy for external causes  0.160 0.367  0.141 0.348 

Other Dummy for other non-cardiac origin  0.130 0.336  0.106 0.308 

Sample size  121392  6210 

 
 

are 1414 and 1423 min (the minimum values are both 0 min). These data are considered to have a 

rather distorted and long right-tailed distribution. To reduce the possible influence of skewness, the 

data were log-transformed by adding 1 to them, denoted as lnETT1 and lnETT2, respectively. How-

ever, the validity of using logarithmic transformation for the time variables is discussed in the next 

section from the model selection perspective. “Witness” is a dummy variable for whether a bystander 

witnessed the patient's cardiac arrest. The mean for the full sample was 0.407, while that for the sur-

vivors was 0.796, which was extremely high, indicating that a bystander witnessing a cardiac arrest is 
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important for the patient’s life. This is because if a bystander witnesses cardiac arrest, the patient is 

acknowledged soon after the incident without being neglected. “Sex,” “Young,” and “Old” are dummy 

variables for individual attributes. “Sex” is a dummy variable related to gender and is set to 1 if the 

subject is female. “Young” and “Old” are dummy variables related to age. Following Nishiuchi et al. 

(2008), we divided age into three categories: 18 years old or younger, 19 to 80 years old, and 81 years 

old or older. Then, dummy variables were set based on the age group between 19 and 80 years. “ELST” 

and “Doctor” are dummy variables related to the EMS system. “ELST” and “Doctor” are dummy 

variables for the presence of emergency life-saving technicians and medical doctors in the ambulance, 

respectively. In addition, “ACLS” is a dummy variable for whether a medical doctor provided ad-

vanced cardiac life support. “CC,” “RB,” and “AED” are dummy variables for the bystander's first aid 

treatment. CC and RB are dummy variables for whether the bystander performed chest compressions 

or rescue breathing, respectively. The AED is a dummy variable for whether the bystander used an 

AED. A dummy variable for whether EMS personnel performed defibrillation is denoted by “DFEP.” 

“VF/VT,” “PEA,” and “Asystole” are dummy variables for the initial cardiac rhythm, indicating 

whether it showed ventricular fibrillation or pulseless ventricular tachycardia, pulseless electrical ac-

tivity, or asystole, respectively. “CO,” “CVD,” “RD,” “MT,” “EXC,” and “Other” are dummy varia-

bles for the presumed cause of cardiac arrest. Dummy variables were assigned to the presumed cardiac 

origin, cerebrovascular diseases, respiratory diseases, malignant tumors, external causes, and other 

non-cardiac causes, where cardiac origin by the exclusion diagnosis was regarded as the reference 

category.  

As mentioned above, from the viewpoint of parameter identifiability, it is recommended to exclude 

at least one variable in 𝐰𝐰𝑖𝑖 from 𝐱𝐱𝑖𝑖. This study used variables other than covariate-based EMS transport 

time in the selection and outcome equations. However, among the variables related to the EMS 

transport time, the time interval between ambulance call and arrival at the patient’s side (ETT1) was 

used only in the outcome equation, and the time interval from ambulance call to hospital arrival 

(ETT2) was used only in the selection equation to maintain the stability and reliability of the parameter 

estimates. 

 

4.2 Estimation results 

Table 2 shows the results of estimating the bivariate probit model with sample selection using the 

Utstein-style data. Standard errors are computed using a robust variance matrix estimator (e.g., White, 

1982). First, the correlation coefficient 𝜌𝜌 between the error terms is estimated significantly at the 1% 

level, indicating that estimating the selection and outcome equations separately would lead to a sample 

selection bias problem, as expected. It is easily seen from the Wald statistic that the null hypothesis 

that all coefficients are zero (H0:𝜷𝜷 = 𝟎𝟎) is rejected at the 1% significance level.  

Regarding EMS transport time, the coefficient estimate of lnETT1 in the outcome equation is neg 
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Table 2 Estimation results for the probit model with sample selection  

Variable 
 Selection equation  Outcome equation 
 Coefficient SE  Coefficient SE 

lnETT 1  –– ––  -0.160 *** 0.043 

lnETT 2  -0.222 *** 0.023  –– –– 

Witness   0.410 *** 0.018  0.389 *** 0.048 

Sex  -0.003 0.016  -0.055 * 0.033 

Young  0.601 *** 0.045  0.273 *** 0.103 

Old  -0.289 *** 0.017  -0.317 *** 0.040 

ELST  0.053 0.051  -0.162 0.113 

Doctor   0.315 *** 0.039  0.037 0.084 

ACLS  -0.047 0.030  -0.054 0.063 

CC    0.113 *** 0.016  0.103 *** 0.034 

RB  0.024 0.026  0.056 0.051 

AED   0.439 *** 0.043  0.557 *** 0.076 

VF/VT  -0.226 *** 0.036  -0.505 *** 0.069 

PEA  -0.845 *** 0.023  -1.164 *** 0.049 

Asystole  -1.525 *** 0.026  -1.893 *** 0.085 

DFEP   0.176 *** 0.031  0.070 0.068 

CO   0.348 *** 0.019   0.488 *** 0.041 

CVD  0.062 0.040  -0.255 *** 0.091 

RD   0.376 *** 0.029  -0.200 * 0.105 

MT  -0.704 *** 0.085  -0.684 *** 0.245 

EXC   0.274 *** 0.023  -0.169 ** 0.082 

Other   0.144 *** 0.025  0.038 0.057 

Correlation (𝜌𝜌)  0.593 (0.000) 

Log-likelihood  -21228.4 

Wald  2007.6 (0.000) 
  

Note 1: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 
Note 2: Figures in parentheses indicate P-values. 

 

 

ative and significant at the 1% level, which supports the hypothesis that early initiation of medical 

treatment facilitates the rehabilitation of patients. In addition, the coefficient estimate of lnETT2 is 

negative and significant at the 1% level in the selection equation, which supports the hypothesis that 

early hospital admission promotes patient survival. Therefore, reducing the time between an ambu-

lance call and arrival at the patient’s side may improve survival and rehabilitation.  

Regarding the control variables other than the time variables, first, the coefficient estimate of Wit-

ness is significantly positive at the 1% level, indicating that when a bystander witnesses the patient's 

cardiac arrest, the likelihood of survival and rehabilitation is high. Furthermore, the result that the 
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coefficient estimate of Sex is negative and significant at the 10% level only in the outcome equation 

suggests that men are more likely to return to society. For the age variables, the coefficient estimates 

for Young and Old are significant at the 1% level. However, the coefficient for Young is negative, 

indicating that the likelihood of survival and rehabilitation is higher when younger than 18 years old. 

In contrast, the coefficient for Old is positive, indicating that the likelihood of survival and rehabilita-

tion is higher when the age is less than 81 years, which is consistent with intuition. Concerning the 

ambulance system, the coefficient estimates for ELST and ACLS were insignificant, and the coeffi-

cient estimate for Doctor was significantly positive at the 1% level only in the selection equation. This 

suggests that the chance of survival increases when a doctor is on board an ambulance. For bystander 

first aid, both CC and AED were significant and positive at the 1% level, but RB was not significant. 

Therefore, chest compressions and AED use by bystanders can effectively improve survival and reha-

bilitation. As expected, the estimated coefficient of DFEP was significantly positive only for the se-

lection equation, indicating that defibrillation by EMS personnel influences survival and mortality. 

Regarding the initial cardiac rhythm, the coefficient estimates for VF/VT, PEA, and systole were all 

negative and significant at the 1% level. Thus, the initial cardiac rhythm of ventricular fibrillation, 

pulseless ventricular tachycardia, pulseless electrical activity, and asystole are associated with a low 

probability of survival and return to society. The presumed causes of cardiac arrest yielded different 

results for different equations. In the selection equation, the coefficient estimates for all variables ex-

cept CVD, which represents cerebrovascular disease, are significant at the 1% level, while those for 

CO, RD, EXD, and Other are positive, and those for MT are negative. Thus, the likelihood of survival 

was high for presumed cardiac origin, respiratory diseases, external causes, and other non-cardiogenic 

causes but low for malignant tumors. In the outcome equation, the estimated coefficients were signif-

icant, except for Other, representing other cardiogenic causes (at the 5% level for EXD and the 10% 

level for RD), but CO was positive. At the same time, CVD, MT, EXD, and RD were negative, sug-

gesting that the likelihood of returning to society was high for presumed cardiac origin but low for 

cerebrovascular diseases, respiratory diseases, malignant tumors, and exogenous causes.  

Furthermore, for comparison, Table 3 reports the results of estimating the selection equations for 

the full sample (𝑁𝑁 = 121392) and the outcome equation for the survival sample (𝑁𝑁 = 6210) only, 

assuming separate univariate probit models, without considering the sample selection mechanism. 

However, this approach may have selection bias, as mentioned above. Although the coefficient esti-

mates and significance of the selection equation are almost the same as in Table 2, the coefficient of 

lnETT1 is slightly overestimated in the outcome equation, and the coefficients of Young, CC, and MT 

are no longer significant. In particular, even the sign of the Young coefficient is reversed, indicating 

that bias is incurred by ignoring sample selection. In addition, Table A2 in the Appendix shows the 

same estimation results using ETT1 and ETT2 without the log transformation of the time variables. 

However, the coefficient estimate of ETT1, an essential variable in our model, is no longer survival 
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Table 3 Estimation results for each probit model without considering sample selection 

Variable 
 Selection equation  Outcome equation 
 Coefficient SE  Coefficient SE 

lnETT 1  –– ––  -0.135 *** 0.050 

lnETT 2  -0.224 *** 0.022  –– –– 

Witness   0.410 *** 0.018  0.229 *** 0.043 

Sex  -0.003 0.016  -0.063 * 0.038 

Young  0.596 *** 0.045  -0.003 0.088 

Old  -0.289 *** 0.017  -0.214 *** 0.043 

ELST   0.054 0.051  -0.216 * 0.127 

Doctor   0.315 *** 0.039  -0.109 0.082 

ACLS  -0.046 0.030  -0.029 0.071 

CC    0.112 *** 0.016  0.054 0.037 

RB  0.023 0.026  0.054 0.058 

AED   0.437 *** 0.043  0.421 *** 0.085 

VF/VT  -0.227 *** 0.036  -0.487 *** 0.075 

PEA   -0.845 *** 0.023  -0.912 *** 0.050 

Asystole  -1.525 *** 0.026  -1.368 *** 0.062 

DFEP   0.176 *** 0.031  -0.010 0.073 

CO    0.348 *** 0.019   0.383 *** 0.045 

CVD  0.062 0.040  -0.342 *** 0.094 

RD   0.376 *** 0.029  -0.452 *** 0.074 

MT  -0.703 *** 0.085  -0.393 0.286 

EXC   0.274 *** 0.023  -0.358 *** 0.059 

Other   0.144 *** 0.025  -0.038 0.062 

Correlation (𝜌𝜌)  ––  –– 

Log-likelihood  -17656.6  -3576.1 

Wald  10818.3 (0.000)  1249.2 (0.000) 
  

Note 1: *** and * indicate significance at the 1% and 10% levels, respectively. 
Note 2: Figures in parentheses indicate P-values. 

 

 

significantly different from zero in the negative direction. This comparison reveals that capturing the 

and mortality processes in a sample selection mechanism, which would avoid bias in the estimation, 

plays a substantial role.  

Next, to investigate the appropriateness of applying a log transformation to the time variables ETT1 

and ETT2 in terms of model selection, the sample selection bivariate probit model was estimated using 

ETT1 and ETT2 instead of lnETT1 and lnETT2, and the results are provided in Table A1 in the Ap-

pendix. Compared to the results in Table 2, the coefficient estimates for ETT1 and ETT2 are smaller 

in absolute value in both equations. However, the coefficient estimates for the other variables that can 
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be considered control variables do not change significantly, and their significance does not differ sub-

stantially, except for a few variables. However, ETT1 in the outcome equation dropped to the 10% 

significance level, possibly due to the severely distorted distributions of the abovementioned time 

variables. Since this study aims to obtain predicted probabilities, considering that these two specifica-

tions are non-nested, we examine the logarithmic transformation from a model selection using two 

information criteria: AIC (Akaike, 1973) and BIC (Schwarz, 1978). Each information criterion, which 

can be easily calculated from the log-likelihood in Table 2 using lnETT1 and lnETT2 as time variables, 

is 𝐴𝐴𝐴𝐴𝐴𝐴 = 42546.7 and 𝐵𝐵𝐵𝐵𝐵𝐵 = 42983, and those for Table A1, which uses ETT1 and ETT2 without 

log transformation, is 𝐴𝐴𝐴𝐴𝐴𝐴 = 42636.0 and 𝐵𝐵𝐵𝐵𝐵𝐵 = 43072.8. Therefore, we can see that the model with 

log transformation on the time variable is preferable and supported from the viewpoint of model se-

lection based on the information criterion. It follows from the above that the benefits measurement in 

the next section employs the estimation results in Table 2; that is, the predicted probabilities obtained 

by modeling with logarithmic time variables. 

 

5. Measurement of benefits 

Using the estimation results in the previous section, we attempted to measure the benefits of a 

hypothetical public project. Specifically, we focus on the time interval from ambulance call to arrival 

at the patient’s side and measure the benefit of a public project that reduces that time by one minute. 

As previously mentioned, if the time interval between an ambulance call and arrival at the patient’s 

side is shortened, medical treatment can be initiated quickly, and the probability of survival and reha-

bilitation can be improved. Examples of public projects that shorten this time interval include the 

introduction of emergency medical helicopters and the construction of roads. If a helicopter can access 

a patient needing medical help, the transport time can be reduced significantly compared to land 

transport by ambulance. The construction of highways and other public facilities also leads to quicker 

access to patients.  

It was shown from the estimation results that a reduction in the time from ambulance call to arrival 

at the patient’s side improves survival and rehabilitation. However, to measure the benefits, we need 

to estimate how much the probability of survival and probability of rehabilitation increase with a re-

duction in the time from ambulance call to arrival at the patient’s side. To this end, we consider a case 

in which this time interval is reduced by ∆𝑡𝑡 min for all samples, resulting in a reduction of ∆𝑡𝑡 min 

from ambulance call to hospital arrival. Thus, for all 𝑖𝑖, we subtracted ∆𝑡𝑡 from ETT1 and ETT2, and 

the new vectors of covariates are expressed as 𝐱𝐱𝑖𝑖∗(∆𝑡𝑡) and 𝐰𝐰𝑖𝑖
∗(∆𝑡𝑡). Then, for all 𝑖𝑖, 𝐱𝐱𝑖𝑖 is replaced with 

𝐱𝐱𝑖𝑖∗(∆𝑡𝑡), and 𝐰𝐰𝑖𝑖 with 𝐰𝐰𝑖𝑖
∗(∆𝑡𝑡), and using the estimates from the previous section 𝛉𝛉� = (𝜷𝜷�′,𝜸𝜸�′,𝜌𝜌�)′ we 

can obtain the following predicted probabilities that individual 𝑖𝑖 are saved: 

𝜋𝜋11𝑖𝑖(𝛉𝛉�,∆𝑡𝑡) = Φ2(𝐱𝐱𝑖𝑖∗
′(∆𝑡𝑡) 𝜷𝜷�,𝐰𝐰𝑖𝑖

∗′(∆𝑡𝑡) 𝜸𝜸�;𝜌𝜌�), (31) 
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𝜋𝜋01𝑖𝑖(𝛉𝛉�,∆𝑡𝑡) = Φ2(−𝐱𝐱𝑖𝑖∗
′(∆𝑡𝑡) 𝜷𝜷�,𝐰𝐰𝑖𝑖

∗′(∆𝑡𝑡) 𝜸𝜸�;−𝜌𝜌�). (32) 

From Eqs. (31) and (32), for the case where both ETT1 and ETT2 were reduced by ∆𝑡𝑡 min for all 

samples, the predicted probabilities of survival and rehabilitation can be defined as follows: 

𝑠̂𝑠𝑗𝑗(∆𝑡𝑡) =
1
𝑁𝑁
��𝜋𝜋11𝑖𝑖(𝛉𝛉�,∆𝑡𝑡) + 𝜋𝜋01𝑖𝑖(𝛉𝛉�,∆𝑡𝑡)�
𝑁𝑁

𝑖𝑖=1

=
1
𝑁𝑁
�Φ(𝐰𝐰𝑖𝑖

∗′(∆𝑡𝑡) 𝜸𝜸�)
𝑁𝑁

𝑖𝑖=1

, (33) 

𝑟̂𝑟𝑗𝑗1(∆𝑡𝑡) =
1
𝑁𝑁
�

𝜋𝜋11𝑖𝑖(𝛉𝛉�,∆𝑡𝑡)
𝜋𝜋11𝑖𝑖(𝛉𝛉�,∆𝑡𝑡) + 𝜋𝜋01𝑖𝑖(𝛉𝛉�,∆𝑡𝑡)

𝑁𝑁

𝑖𝑖=1

=
1
𝑁𝑁
�

𝜋𝜋11𝑖𝑖(𝛉𝛉�,∆𝑡𝑡)
Φ(𝐰𝐰𝑖𝑖

∗′(∆𝑡𝑡) 𝜸𝜸� )

𝑁𝑁

𝑖𝑖=1

. (34) 

Assuming a public project that reduces the time interval from ambulance call to arrival at the pa-

tient’s side by one minute, the survival and rehabilitation probabilities before and after the implemen-

tation of this project, as well as the increase in each of these probabilities, are predicted as follows: 

𝑠̂𝑠𝑗𝑗0 = 𝑠̂𝑠𝑗𝑗(0) = 0.0512335, 𝑠̂𝑠𝑗𝑗1 = 𝑠̂𝑠𝑗𝑗(1) = 0.0518110, ∆𝑠̂𝑠𝑗𝑗 = 0.0005775, (35) 

𝑟̂𝑟𝑗𝑗10 = 𝑟̂𝑟𝑗𝑗1(0) = 0.2734664, 𝑟̂𝑟𝑗𝑗11 = 𝑟̂𝑟𝑗𝑗1(1) = 0.2788709, ∆𝑟̂𝑟𝑗𝑗1 = 0.0054045. (36) 

In 2012, the total population of Japan was about 126 million, that is, 𝑁𝑁� = 126 ∙ 106, and 121,392 

cardiopulmonary arrest patients were transported by ambulance per year, which allows us to easily 

obtain the estimated hazard probability as the empirical probability given by 𝑝̂𝑝𝑗𝑗0 = 0.00096. Thus, if 

this hypothetical project is implemented, the increment of survival and rehabilitation per year are cal-

culated as 

∆𝑁𝑁�𝑗𝑗𝑠𝑠 = 𝑁𝑁�𝑝̂𝑝𝑗𝑗0∆𝑠̂𝑠𝑗𝑗 ≈ 70, (37) 

∆𝑁𝑁�𝑗𝑗𝑟𝑟 = 𝑁𝑁�𝑝̂𝑝𝑗𝑗0𝑠̂𝑠𝑗𝑗0∆𝑟̂𝑟𝑗𝑗1 ≈ 33. (38) 

Multiplying these values by unit benefits yields the total benefit 𝐵𝐵𝑗𝑗 as in Eq. (20). 

Next, we set the unit benefits of Eqs. (16)–(18) using the benefit transfer approach. Although there 

are few studies on VSL estimates in Japan, Tsuge et al. (2005) and Itaoka et al. (2007) adopt the stated 

preference approach, and Miyazato (2011) and Munro (2018) adopt the revealed preference approach. 

Table 4 shows these studies’ VSL and VSI estimates, our unit benefits calculated from them, and Eqs. 

(35) and (36), and the total benefit of our hypothetical project. Since Koyama and Takeuchi (2004) 

derived the estimated ratio of VSI for severe disability to VSL as 0.224, the VSI estimates in Table 4 

were calculated. As presented above, the benefits of a project can be easily measured using the frame-

work proposed in this study. We can see from Table 4 that the higher the VSL estimates, the higher the 

total annual benefits, and that the stated preference approach appears to yield larger VSL 
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Table 4 Unit and total benefits based on benefit transfer from previous studies 

 Tsuge et al. 
(2005) 

Itaoka et al. 
(2007) 

Miyazato  
(2011) 

Munro 
 (2018) 

Approach SP SP RP RP 

Data year 2002 1999 1999-2001 2009-2017 

(VSL (million JPY)) (350) (103-344) (818-2236) (440-646) 

(VSI (million JPY)) (78) (23-77) (183-501) (99-145) 

 𝜔𝜔�𝑗𝑗
𝑝𝑝 (million JPY) 335 99-329 783-2140 421-618 

 𝜔𝜔�𝑗𝑗𝑠𝑠 (million JPY) 293 86-288 685-1872 368-541 

 𝜔𝜔�𝑗𝑗𝑟𝑟 (million JPY) 78 23-77 183-501 99-145 

Total benefit  
(billion JPY/year) 23 7-23 54-148 29-43 

  
Note: Figures in parentheses are taken or calculated from the results of previous studies. 

 

 

estimates than the revealed preference approach. The median annual total benefit is around 15-35 bil-

lion yen, except for Miyazato (2011), in which VSL estimates take the highest value. Here, we focus 

on the Tohoku region, which is assumed to be a large mountainous area lacking a dense transportation 

network, making emergency transport more time-consuming. Since the population of the Tohoku re-

gion is known to be approximately 7% of Japan's total population, the annual total benefit is estimated 

to be 1.0 to 2.4 billion yen for the entire Tohoku region or 160 to 400 million yen per prefecture in the 

Tohoku region. It is suggested that the net benefit per prefecture would be generated if the cost was 

less than this amount. Thus, the effect of reducing emergency transport time would be significant. 

Such a cost-benefit analysis provides useful information for policy evaluation and budget processes in 

the central government and local governments that enhance public safety. 

 

6. Conclusion 

This study proposes a theoretical framework for measuring the benefits of a project that changes 

the probability of injury/illness along with the probability of death. To this end, we extended a standard 

model and defined the project's benefits by introducing the probability of a hazardous event that may 

cause death or injury/illness as well as the conditional probability of survival or recovery under the 

occurrence of such an event. As these benefits are associated with VSL and VSI, benefit transfer can 

be applied to their evaluation. In addition, assuming the availability of individual data, mainly on the 

existence of death or injury/illness of individuals who have experienced a disaster or accident, we 

provided a statistical approach for estimating the changes in the conditional probabilities of survival 
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and recovery brought about by the project. Specifically, a binary response model with sample selection 

was adapted to describe the two-step process in which some individuals who faced an event that caused 

death and injury/illness survived, and some of the survivors recovered. Furthermore, we applied our 

method to instances of cardiopulmonary arrest and EMS transport as specific events that could cause 

death and injury/illness using Japanese Utstein-style data. Focusing on the case where the time interval 

between ambulance call and arrival at the patient’s side was shortened by one minute, the estimated 

changes in the probabilities of survival and recovery were derived, whereby we attempted to measure 

the benefits of this reduction. The remaining issues in this study are as follows:  

Although the class of standard models with only mortality risk has been extended to cases where 

the individual lives for multiple periods, as in Garber and Phelps (1997) and Hammitt and Liu (2004), 

unfortunately, it seems that no such extension has been made for models with both mortality and mor-

bidity risk, including ours. For example, if a project changes the hazard probability, as well as the 

conditional probability of survival and recovery, the probabilities of death and injury/illness will also 

change over time. Therefore, the unit benefits associated with the VSL and VSI should be derived to 

account for such dynamic effects. Furthermore, introducing altruism into our model is an important 

potential concern because Jones-Lee (1991) showed that if altruism is exclusively safety-focused, VSL 

should be supplemented not only by what people would be willing to pay to improve their own safety 

but also by what they would be willing to pay to improve the safety of others. Moreover, Jones-Lee 

(1992) proposed a VSL multiplier that is determined by the magnitude of safety-focused altruism for 

others relative to wealth-focused altruism for others, and Long (2022) recently attempted to estimate 

it. Since these properties are expected to hold for VSI, the derivation of unit benefits through altruism 

will be a fruitful direction for our model. 

The theoretical model presented in this paper allows for multiple injuries and illnesses; however, 

in the empirical analysis representing an example of benefit measurement using Utstein-style data, 

only severe disability, including coma, was treated as an injury/illness. Since the Utstein-style data 

collected data on good performance, moderate disability, severe disability, and coma as the prognosis 

status after one month, it would be possible to add moderate disability to the analysis. However, it is 

necessary to replace the outcome equation with an ordinal response model and obtain an estimated 

VSI for moderate disability. Furthermore, it may be useful to measure the benefits of each presumptive 

cause of cardiopulmonary arrest in the Utstein-style data using the fact that this study can cover mul-

tiple events that lead to death and injury/illness. Similarly, since the Utstein-style data include infor-

mation on the prefecture of the patient, it is necessary to examine differences in policies and public 

capital related to emergency medical care by the local government.  

Finally, regarding the statistical analysis aspect, as argued by Wilde (2013) and Swan and Baum-

stark (2022), for example, albeit in different contexts, endogeneity may exist in the EMS transport 

time variable, which is also regarded as a key variable in the modeling for the estimation using the 
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Utstein-style data in this study. However, under the binary response model with sample selection dis-

cussed in this paper, an estimation approach that allows for the simultaneous inclusion of endogenous 

variables in both the outcome and selection equations would not have been established at present. 

Development in this direction is a challenging problem for future research. 
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Appendix 

 
Table A1 Estimation results for the probit model with sample selection 

Variable 
 Selection equation  Outcome equation 
 Coefficient SE  Coefficient SE 

ETT 1  –– ––  -0.008 * 0.004 

ETT 2  -0.003 *** 0.001  –– –– 

Witness   0.404 *** 0.018  0.377 *** 0.058 

Sex  -0.001 0.016  -0.056 0.034 

Young  0.613 *** 0.045  0.252 ** 0.122 

Old  -0.287 *** 0.017  -0.310 *** 0.046 

ELST  0.053 0.051  -0.164 0.117 

Doctor   0.302 *** 0.039  0.024 0.092 

ACLS  -0.053 * 0.030  -0.051 0.064 

CC    0.117 *** 0.016  0.096 *** 0.036 

RB  0.023 0.026  0.055 0.052 

AED   0.437 *** 0.043  0.548 *** 0.081 

VF/VT  -0.210 *** 0.036  -0.502 *** 0.070 

PEA   -0.837 *** 0.023  -1.154 *** 0.062 

Asystole  -1.521 *** 0.026  -1.871 *** 0.085 

DFEP   0.166 *** 0.031  0.062 0.072 

CO    0.351 *** 0.019   0.484 *** 0.045 

CVD  0.065 0.040  -0.267 *** 0.098 

RD   0.378 *** 0.029  -0.224 * 0.128 

MT  -0.704 *** 0.085  -0.676 *** 0.257 

EXC   0.274 *** 0.023  -0.185 * 0.100 

Other   0.144 *** 0.025  0.031 0.061 

Correlation (𝜌𝜌)  0.548 (0.007) 

Log-likelihood  -21273.0 

Wald  1604.0 (0.000) 
  

Note 1: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 
Note 2: Figures in parentheses indicate P-values. 
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Table A2 Estimation results for each probit model without considering sample selection 

Variable 
 Selection equation  Outcome equation 
 Coefficient SE  Coefficient SE 

ETT 1  –– ––  -0.006 0.005 

ETT 2  -0.003 *** 0.001  –– –– 

Witness   0.404 *** 0.018  0.227 *** 0.043 

Sex  -0.001 0.016  -0.064 * 0.038 

Young  0.608 *** 0.045  -0.002 0.088 

Old  -0.287 *** 0.017  -0.212 *** 0.043 

ELST  0.053 0.051  -0.212 * 0.127 

Doctor   0.301 *** 0.039  -0.111 0.082 

ACLS  -0.052 * 0.030  -0.027 0.071 

CC    0.116 *** 0.016  0.050 0.037 

RB  0.023 0.026  0.054 0.058 

AED   0.435 *** 0.043  0.418 *** 0.085 

VF/VT  -0.211 *** 0.036  -0.480 *** 0.075 

PEA   -0.837 *** 0.023  -0.908 *** 0.050 

Asystole  -1.521 *** 0.026  -1.367 *** 0.062 

DFEP   0.166 *** 0.031  -0.010 0.073 

CO    0.351 *** 0.019   0.381 *** 0.045 

CVD  0.066 * 0.040  -0.342 *** 0.094 

RD   0.378 *** 0.029  -0.452 *** 0.074 

MT  -0.703 *** 0.085  -0.403 0.285 

EXC   0.274 *** 0.023  -0.356 *** 0.059 

Other   0.144 *** 0.025  -0.038 0.062 

Correlation (𝜌𝜌)  ––  –– 

Log-likelihood  -17696.0  -3579.0 

Wald  10802.4 (0.000)  1243.7 (0.000) 
  

Note 1: *** and * indicate significance at the 1% and 10% levels, respectively. 
Note 2: Figures in parentheses indicate P-values. 
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